COMMON FIXED POINT THEOREM IN b_2-METRIC SPACES

Jinxing Cui1 & Linan Zhong1

(Department of Mathematics, Yanbian University, Yanji, 133002, P.R. China)

*Corresponding author: Linan Zhong. Email: zhonglinan2000@126.com.

ABSTRACT

We establish a unique common fixed point theorem for two pair of weekly compatible maps satisfying a contractive condition in a complete b_2-metric space. When the following have been proved, I recommend it to be published, which extends and generalizes some known results in metric space to b_2-metric space.

Keywords: Common fixed point; complete b_2-metric space; weekly compatible maps.

1 Introduction

Fixed point theory has been studied by many authors for its useful function in a variety of areas. In 1992, a polish mathematician, Banach, proved a theorem known as Banach contraction principle [1]. This principle presents useful results in nonlinear analysis, functional analysis and topology. The concept of weakly commuting has been introduced by Sesssa S [2]. Years later, Gerald Jungck [3] introduced weakly compatible mappings, which are more generalized commuting mappings.

In this paper, we present fixed point results for two pair of mappings satisfying a contractive type condition by using the concept of weakly compatible mappings in a complete generalized metric space, which is called b_2-metric space [5] and this space was generalized from both 2-metric space [6-8] and b-metric space [9-10].

2 Preliminaries

The following definitions will be needed to present before giving our results.

Definition 2.1 [2] Let f and g be two self-maps on a set X. Maps f and g are said to be commuting if $fgx=gfx$ for all $x \in X$.

Definition 2.2 [4] Let f and g be two self-maps on a set X. If $fx=gx$, for some x of X, then x is called coincidence point of f and g.

Definition 2.3 [4] Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly compatible if they commute at coincidence points. That is, if $fx=gx$ for some $x \in X$, then $fgx=gfx$.

Lemma 2.4 [4] Let f and g be weakly compatible self mappings of a set X. If f and g have a unique point of coincidence, that is, $\omega=fx=gx$, then ω is the unique common fixed point of f and g.

Definition 2.5 [5] Let X be a nonempty set, $s \geq 1$ be a real number and let $d : X \times X \times X \rightarrow R$ be a map satisfying the following conditions:

1. For every pair of distinct points $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.

2. If at least two of three points \(x, y, z \) are the same, then \(d(x, y, z) = 0 \).

3. The symmetry:
\[
d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x)
\]
for all \(x, y, z \in X \).

1. The rectangle inequality:
\[
d(x, y, z) \leq [d(x, y, a) + d(y, z, a) + d(z, x, a)], \quad \text{for all} \quad x, y, z, a \in X.
\]

Then \(d \) is called a \(b_2 \) metric on \(X \) and \((X,d)\) is called a \(b_2 \) metric space with parameter \(s \). Obviously, for \(s = 1 \), \(b_2 \) metric reduces to 2-metric.

Definition 2.6 [5] Let \(\{x_n\} \) be a sequence in a \(b_2 \) metric space \((X,d)\).

1. A sequence \(\{x_n\} \) is said to be \(b_2 \)-convergent to \(x \in X \), written as \(\lim_{n \to \infty} x_n = x \), if all \(a \in X \) \(\lim_{n \to \infty} d(x_n, x, a) = 0 \).

2. \(\{x_n\} \) is Cauchy sequence if and only if \(d(x_n, x_m, a) \to 0 \), when \(n, m \to \infty \). for all \(a \in X \).

3. \((X, d)\) is said to be -complete if every \(b_2 \)-Cauchy sequence is a \(b_2 \)-convergent sequence.

Definition 2.7 [5] Let \((X, d)\) and \((X', d')\) be two \(b_2 \)-metric spaces and let \(f : X \to X' \) be a mapping. Then \(f \) is said to be \(b_2 \)-continuous, at a point \(z \in X \) if for a given \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(x \in X \) and \(d(z, x, a) < \delta \) for all \(a \in X \) imply that \(d'(fz, fx, a) < \varepsilon \). The mapping \(f \) is \(b_2 \)-continuous on \(X \) if it is \(b_2 \)-continuous at all \(z \in X \).

Definition 2.8 [5] Let \((X, d)\) and \((X', d')\) be two \(b_2 \)-metric spaces. Then a mapping \(f : X \to X' \) is \(b_2 \)-continuous at a point \(x \in X' \) if and only if it is \(b_2 \)-sequentially continuous at \(x \); that is, whenever \(\{x_n\} \) is \(b_2 \)-convergent to \(x \), \(\{fx_n\} \) is \(b_2 \)-convergent to \(f(x) \).

Definition 2.9 [6-8] Let \(X \) be a nonempty set and let \(d : X \times X \times X \to R \) be a map satisfying the following conditions:

1. For every pair of distinct points \(x, y \in X \), there exists a point \(z \in X \) such that \(d(x, y, z) \neq 0 \).

2. If at least two of three points \(x, y, z \) are the same, then \(d(x, y, z) = 0 \).

3. The symmetry:
\[
d(x, y, z) = d(x, z, y) = d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x)
\]
for all \(x, y, z \in X \).

4. The rectangle inequality:
\[
d(x, y, z) \leq d(x, y, a) + d(y, z, a) + d(z, x, a) \quad \text{for all} \quad x, y, z, a \in X.
\]

Then \(d \) is called a 2 metric on \(X \) and \((X,d)\) is called a 2 metric space.

Definition 2.10 [9-10] Let \(X \) be a nonempty set and \(s \geq 1 \) be a given real number. A function \(d : X \times X \to R^+ \) is a \(b \) metric on \(X \) if for all \(x, y, z \in X \), the following conditions hold:

1. \(d(x, y) = 0 \) if and only if \(x = y \).
3. \(d(x, y) = d(y, x) \).
4. \(d(x, y) \leq s[d(x, y) + d(y, z)] \).

In this case, the pair \((X, d)\) is called a \(b\) metric space.

3 Main results

Theorem 3.1. Let \((X, d)\) be a complete \(b_2\)-metric space, and \(P, Q, S, T : X \to X\) are four mappings, satisfying the following conditions:

(a) \(T(X) \subseteq P(X) \) and \(S(X) \subseteq Q(X) \); Both \(P \) and \(Q \) are surjections.

(b) \(d(Sx, Ty, a) \leq c(\lambda(x, y, a)) \).

Where \(\lambda(x, y, a) = \max\{d(Px, Qx, a), d(Px, Sx, a), d(Qx, Ty, a)\} \) for all \(x, y \in X \) and \(0 \leq c < \frac{1}{s} \).

(c) \((S, P)\) and \((T, Q)\) are weakly compatible.

Then \(S, P, Q \) and \(T \) have a unique common fixed point in \(X \).

Proof In this part, we will show that \(\lim d(y_{n+1}, y_n, a) = 0 \).

Let \(x_0 \) be an arbitrary point in \(X \) and construct two sequences \(\{x_n\} \) and \(\{y_n\} \) in \(X \) such that

\[
\begin{align*}
y_n &= Qx_{n+1} = Sx_n, \\
y_{n+1} &= Px_{n+2} = Tx_{n+1}.
\end{align*}
\]

From (b), we have

\[
d(y_{n+1}, y_n, a) = d(Sx_n, Tx_{n+1}, a) \leq c\lambda(x_n, x_{n+1}, a) \tag{3.1}
\]

where

\[
\begin{align*}
\lambda(x_n, x_{n+1}, a) &= \max\{d(Px_n, Qx_{n+1}, a), d(Px_n, Sx_n, a), d(Qx_{n+1}, Tx_{n+1}, a)\} \\
&= \max\{d(Tx_{n-1}, Sx_n, a), d(Tx_{n-1}, Sx_n, a), d(Sx_n, Tx_{n+1}, a)\} \\
&= \max\{d(Tx_{n-1}, Sx_n, a), d(Sx_n, Tx_{n+1}, a)\} \\
&= \max\{d(y_{n-1}, y_n, a), d(y_n, y_{n+1}, a)\}.
\end{align*}
\]

Assume \(\lambda(x_n, x_{n+1}, a) = d(y_n, y_{n+1}, a) \) and from (3.1) we have,

\[
d(y_n, y_{n+1}, a) < cd(y_n, y_{n+1}, a),
\]

which is impossible. Then we get \(\lambda(x_n, x_{n+1}, a) = d(y_{n-1}, y_n, a) \) also from (3.1) we get

\[
d(y_n, y_{n+1}, a) < cd(y_{n-1}, y_n, a) \tag{3.2}
\]

This implies that the sequence \(\{d(y_n, y_{n+1}, a)\} \) is decreasing and it must converge to \(r \geq 0 \). Therefore as \(n \to \infty \), from (3.2) we get \(r \leq cr \), this gives us that \(r = 0 \), then the result is obtained:

\[
\lim_{n \to \infty} d(y_{n+1}, y_n, a) = 0 \tag{3.3}
\]

Then we show that \(d(y_n, y_{n+1}, a) = 0 \).

From part 2 of Definition 2.5, we have \(d(x_m, x_m, x_{m-1}) = 0 \). Since \(\{d(x_n, x_{n+1}, a)\} \) is decreasing, we get \(d(x_n, x_{n+1}, a) = 0 \) from the assumption that \(d(x_{n-1}, x_n, a) = 0 \), then it is easy to get

\[
d(x_n, x_{n+1}, x_m) = 0, \quad \text{for all} \quad n+1 \geq m. \tag{3.4}
\]
For $0 \leq n+1 < m$, we get $m-1 \geq n+1$ and that is $m-2 \geq n$, from (3.4)
\[d(x_{m-1}, x_m, x_{n+1}) = d(x_{m-1}, x_m, x_n) = 0, \quad (3.5) \]

For (3.5) and triangular inequality, we have
\[d(x_n, x_{n+1}, x_m) \leq s d(x_n, x_{n+1}, x_{m-1}) + s d(x_{n+1}, x_m, x_{m-1}) \]
\[= d(x_n, x_{n+1}, x_{m-1}). \]

And since $d(x_n, x_{n+1}, x_{m+1}) = 0$, and from the inequality above,
\[d(x_{n+1}, x_n, x_m) \leq s^{m-n-1} d(x_{n+1}, x_{n+1}, x_n) = 0, \quad \text{for all} \quad 0 \leq n+1 \leq m. \quad (3.6) \]

Now for all $i, j, k \in N$, now we consider the condition of $j > i$, from the above equation
\[d(x_{j-1}, x_j, x_i) = d(x_k, x_{j-1}, x_j) = 0. \quad (3.7) \]

From (3.7) and triangular inequality, therefore
\[d(x_i, x_k, x_j) \leq s [d(x_i, x_j, x_{j-1}) + d(x_j, x_{j-1}, x_k) + d(x_k, x_{j-1}, x_j)] \]
\[\leq s \Lambda \]
\[\leq s^{j-i} d(x_i, x_k, x_j) \]
\[= 0. \]

In conclusion, the result below is gotten
\[d(x_i, x_k, x_j) = 0, \quad \text{for all} \quad i, j, k \in N. \quad (3.8) \]

Now we prove that $\{y_n\}$ is a Cauchy sequence.

Suppose to the contrary, that is, $\{y_n\}$ is not a Cauchy sequence. Then there exists $\varepsilon > 0$
for which we can find two subsequences $\{n_i\}$ and $\{m_i\}$ such that $i < m_i < n_i$ and
\[d(y_{m_i}, y_n, a) \geq \varepsilon \quad \text{and} \quad d(y_{m_i}, y_{n-1}, a) < \varepsilon. \quad (3.9) \]

From the part 4 of Definition 2.5 and (3.8), we get
\[d(y_{m_i}, y_{n-1}, a) \leq s [d(y_{m_i}, y_{m_{i+1}}, a) + d(y_{m_{i+1}}, y_n, a) + d(y_n, y_{m_{i+1}}, a)] \]
\[\leq s d(y_{m_i}, y_{m_{i+1}}, a) + d(y_{m_i}, y_n, a). \]

Taking $i \to \infty$, from (3.3) and (3.9) we have
\[\varepsilon \leq 1 \lim_{i \to \infty} d(y_{m_{i+1}}, y_{n_i}, a). \quad (3.10) \]

From (b), we get
\[d(y_{n_i}, y_{m_{i+1}}, a) = d(Sx_{n_i}, Tx_{m_{i+1}}, a) \leq c \Lambda(x_{n_i}, y_{m_{i+1}}, a). \quad (3.11) \]

Since
\[\lim_{n \to \infty} \Lambda(x_{n_i}, x_{m_{i+1}}, a) = \max \{ \lim_{n \to \infty} d(Px_{n_i}, Qx_{m_{i+1}}, a), \lim_{n \to \infty} d(Px_{n_i}, Sx_{m_{i+1}}, a), \]
\[= \max \{ \lim_{n \to \infty} d(y_{n_i-1}, y_{m_i}, a), \lim_{n \to \infty} d(y_{n_i-1}, y_{n_i}, a), \lim_{n \to \infty} d(y_{m_i+1}, y_{m_i}, a) \} \]
\[= \lim_{n \to \infty} d(y_{n_i-1}, y_{m_i}, a). \]

And by (3.11) we have
\[\lim_{n \to \infty} d(y_{n_i}, y_{m_{i+1}}, a) \leq \lim_{n \to \infty} c \Lambda(y_{n_i}, y_{m_{i+1}}, a). \quad (3.12) \]

Again taking $i \to \infty$ by (3.9) and (3.12) we get
\[\varepsilon \leq 1 \lim_{i \to \infty} d(y_{m_{i+1}}, y_{n_i}, a) \leq c \varepsilon < \frac{\varepsilon}{s}. \quad (3.13) \]
Which is a contraction. Therefore \(\{ y_n \} \) is a Cauchy sequence in \(X \).

Since \(X \) is complete, there exists a point \(z \in X \) such that \(n \to \infty, \{ y_n \} \to z \).

Thus \(\lim_{n \to \infty} S x_n = \lim_{n \to \infty} Q x_n = z \) and \(\lim_{n \to \infty} T x_{n+1} = \lim_{n \to \infty} P x_{n+2} = z \).

That is \(\lim_{n \to \infty} S x_n = \lim_{n \to \infty} Q x_n = \lim_{n \to \infty} T x_{n+1} = \lim_{n \to \infty} P x_{n+2} = z \). From \(T(X) \subseteq P(X) \) and \(P \) is a surjection, there exists a point \(u \) in \(X \) such that \(z = Pu \), then from (b), we get

\[
d(Su, z, a) \leq s[d(Su, Tx_{n+1}, a) + d(Tx_{n+1}, z, a) + d(Tx_{n+1}, Su, z)]
\]

\[
\leq s[c \lambda(u, x_{n+1}, a) + d(Tx_{n+1}, z, a) + d(Tx_{n+1}, Su, a)],
\]

where

\[
\lambda(u, x_{n+1}, a) = \max\{d(Pu, Qx_{n+1}, a), d(Pu, Su, a), d(Qx_{n+1}, Tx_{n+1}, a)\}
\]

\[
= \max\{d(z, Sx_n, a), d(z, Su, a), d(Sx_n, Tx_{n+1}, a)\}.
\]

We take \(n \to \infty \), we get

\[
\lambda(u, x_{n+1}, a) = \max\{d(z, z, a), d(z, Su, a), d(z, z, a)\} = d(z, Su, a).
\]

Therefore as \(n \to \infty \), \(d(Su, z, a) \leq sc(d(z, Su, a)) \).

Assume there exists \(a \in X \) such that \(d(Su, z, a) > 0 \) then we get \(\frac{1}{s} \leq c \) from the above inequality, which is contraction with \(c < \frac{1}{s} \). Thus \(Su = z \), furthermore \(Pu = Su = z \). So \(P \) and \(S \) have a coincidence point \(u \) in \(X \). Since \(P \) and \(S \) are weakly compatible, \(SPu = PSu \) that is \(Sz = Pz \).

From \(S(X) \subseteq Q(X) \) and \(Q \) is a surjection, there exists a point \(v \) in \(X \) such that \(z = Qv \), then from (b), we get

\[
d(Tv, z, a) \leq c \lambda(u, v, a),
\]

where

\[
\lambda(u, v, a) = \max\{d(Pu, Qv, a), d(Pu, Su, a), d(Qv, Tv, a)\}
\]

\[
= \max\{d(z, z, a), d(z, z, a), d(z, Tv, a)\}
\]

\[
= d(z, Tv, a).
\]

Then

\[
d(z, Tv, a) \leq cd(z, Tv, a).
\]

Assume \(d(z, Tv, a) > 0 \), then we have \(1 \leq c \), which is contraction with \(c < \frac{1}{s} < 1 \).

Therefore \(Tv = Qv = z \). So \(Q \) and \(T \) have a coincidence point \(v \) in \(X \). Since \(Q \) and \(T \) are weakly compatible, \(QTv = TQv \) that is \(Qz = Tz \).

Now we prove that \(z \) is a fixed point of \(S \). By (b), we get

\[
d(Sz, z, a) = d(Sz, Tv, a) \leq c \lambda(z, v, a),
\]

where

\[
\lambda(z, v, a) = \max\{d(Pz, Qv, a), d(Pz, Sz, a), d(Qv, Tv, a)\}
\]

\[
= \max\{d(Sz, z, a), d(Sz, Sz, a), d(z, z, a)\}
\]

\[
= d(Sz, z, a).
\]

then we get

\[
d(Sz, z, a) \leq cd(Sz, z, a).
\]

Assume \(d(z, Tv, a) > 0 \), we get \(1 \leq c \), which is a contraction. Thus \(Sz = Pz = z \).

Now we prove that \(z \) is a fixed point of \(T \). Then from (b), we get
\[d(Tz, z, a) = d(Sz, Tz, a) \leq c \lambda(z, z, a), \]

where
\[
\lambda(z, z, a) = \max\{d(Pz, Qz, a), d(Pz, Sz, a), d(Qz, Tz, a)\}
= \max\{d(Tz, z, a), d(Tz, Tz, a), d(z, z, a)\}
= d(Tz, z, a).
\]

then we get
\[d(z, Tz, a) \leq cd(z,Tv, a). \]

Assume \(d(z, Tz, a) > 0 \), we have \(1 \leq c \), which is a contraction. Thus \(Tz = Qz = z \).

So we get \(z \) is a common fixed point of \(P, Q, S, T \). From (b), we get
\[d(z, \omega, a) = d(Sz, Tz, a) \leq c \lambda d(z, \omega, a), \]

where
\[
\lambda(z, \omega, a) = \max\{d(Pz, Q\omega, a), d(Pz, Sz, a), d(Qz, T\omega, a)\}
= \max\{d(z, \omega, a), d(z, z, a), d(\omega, \omega, a)\}
= d(z, \omega, a).
\]

thus \(d(z, \omega, a) \leq c \lambda d(z, \omega, a). \)

Suppose that \(d(z, \omega, a) > 0 \), we get \(1 \leq c \), which is a contraction. Thus \(z = \omega \), then
\(P, Q, S, T \) have a unique common fixed point \(z \in X \). \(\square \)

REFERENCES

