THE MANAGEMENT OF MUNICIPAL SOLID WASTE GENERATED BY **BUSINESSES OPERATING IN THE CITY OF TSHWANE, SOUTH AFRICA**

Yohannes Worku, Jacques Snyman & Mammo Muchie Tshwane University of Technology, Pretoria SOUTH AFRICA

ABSTRACT

The aim of the study was to assess factors that affect efficiency in the management of municipal solid waste in the City of Tshwane. The study focuses on municipal solid waste routinely generated by 1, 034 businesses that operate in Tshwane. Data was collected on 7 categories of solid waste (industrial, commercial, institutional, construction and demolition, municipal services, processing and manufacturing, and agriculture). Efficiency in solid waste management was assessed by using a structural time-based model designed for evaluating efficiency as a function of the length of time required to manage waste. Efficiency was measured as a dichotomous (efficient, inefficient) dependent variable of study at each of the 1, 034 businesses that were selected for the study, and was subsequently regressed on a set of predictor variables that are well known to affect efficiency in solid waste management. Statistical data analysis was performed by using methods such as frequency tables. Pearson's chi-square tests of association, binary logistic regression analysis and multilevel analysis. At each of the 1, 034 businesses selected for the study, the degree of adherence to municipal bylaws and procedures recommended for solid waste management by businesses by the City of Tshwane was graded based on ISO 14000 and ISO 14031 standards and guidelines defined by the Canadian Bureau of Standards. The study found that 857 of the 1, 034 businesses selected for the study (83%) were efficient with regards to the proper collection and disposal of solid waste, whereas 177 of the businesses (17%) were inefficient. Old businesses and businesses operated by owners were found to be more efficient than young businesses and businesses operated by employed managers. Businesses that were efficient in the management of municipal solid waste practiced better personal hygiene, environmental sanitation, source reduction of waste, the provision of waste disposal bins to customers at their business premises, inspection of business premises for sanitation, in comparison with inefficient businesses. The average deviation time (deviation from the regular pick-up time of waste from business premises) of municipal waste collection trucks was equal to 8.89 minutes. Results obtained from binary logistic regression analysis showed that efficiency in solid waste management was adversely affected by 4 predictor variables. These 4 predictor variables were lack of adherence to municipal bylaws and regulations [OR=9.17; 95% C. I. = (6.42. 12.54)], wrong perception on the merits of adhering to municipal bylaws on solid waste management [OR=8.81; 95% C. I. = (6.01, 11.35)], failure to provide customers with enough trash cans [OR=3.15; 95% C. I. = (1.46, 5.87)], and the operation of businesses by employed managers [OR=2.69; 95% C. I. = (1.66, 4.32)], in a decreasing order of importance. Results obtained from multilevel analysis showed that there were significant differences among the 7 categories of waste, and that businesses within the same category of waste and geographical location were equally efficient in the management of solid waste.

Key words: Integrated municipal solid waste management system, Pretoria, Efficiency, Structural time-based model, Odds ratio, Multilevel analysis.

INTRODUCTION

The Waste Management Division of the City of Tshwane has an integrated municipal solid waste management system. Annual reports produced by the City of Tshwane since April 2008 show a number of factors that are known to adversely affect the capacity of the City of Tshwane to optimally utilize its integrated municipal solid waste management system. The study was conducted against the background of failure to optimize the efficiency with which waste generated by businesses is managed in and around the City of Tshwane in South Africa. The study was conducted with a view to identify and quantify key factors that adversely affect efficiency in the management of municipal solid waste generated in the city by businesses. The study was based on a random sample of 1, 034 businesses that fulfilled the criteria of selection into the study. The businesses selected for the study were all located in the commercial business district of Pretoria. Under the current political dispensation in South Africa, Pretoria is administered by the City of Tshwane Metropolitan Municipality (CTMM). Based on a census that was conducted in 2011 by Statistics South Africa (2011), about 3 million people live in and around Pretoria [1].

The city is home to over 5, 000 businesses out of which 1, 603 businesses operate within the Central Business District of Tshwane, known as Pretoria [2]. According to the annual report issued by the City of Tshwane Metropolitan Municipality for the budget year 2010-2011, about 1, 734, 295 tons of solid waste is collected each year from businesses operating in the city [3]. The solid waste produced by businesses in the city includes trash or garbage such as wood, product packaging, empty bottles, used tyres and car parts, and cans, garden refuse, furniture, clothing, leftover food, newspapers, wires, grease, appliances, paint, pieces of metal, broken containers, sheet metal, used medicine, and the like. These businesses produce massive volumes of solid and liquid waste on a daily basis. Taxi ranks, bus stations, open flea markets, food outlets, and small businesses located in Pretoria are synonymous with litter, uncontrolled solid and liquid waste, as well as lack of capacity in the efficient management of waste. The annual report released by the City of Tshwane Metropolitan Municipality (CTMM) for the year 2011 shows that massive waste is accumulated during strike action by municipal workers responsible for the removal of waste from households and businesses [4]. The collection, disposal and processing of waste produced by businesses and households is regulated by legislative policies set out and enforced by the Municipality of Tshwane and the South African National Department of Environmental Affairs and Tourism [3 - 5]. The use of an integrated municipal solid waste management system [6 - 8] has been shown to be essential for improving overall efficiency in municipal waste management in almost all developed nations of the world. In order for an integrated waste management system to perform efficiently, all relevant stakeholders of the waste chain must play a mutually collaborative role in the collection, disposal, processing and management of waste.

A review of the relevant literature shows that such a measure is essential for reducing the overall cost of waste management, and for the protection of the environment [9-11]. Overall efficiency in the management of waste depends on adherence to municipal acts on waste disposal and management [12-14]. Research work carried out in several countries of the world including the Netherlands has shown that health education on environmental sanitation and primary health care [15], socioeconomic incentives [16] as well as a strict enforcement of municipal bylaws [17] are all needed for ensuring overall environmental cleanliness and the efficient management of waste in metropolitan cities such as Tshwane.

Table 1, below, shows 8 categories of solid waste that are commonly found in and around the City of Pretoria. The study excludes solid waste produced by residential homes, and only deals with 7 of the 8 categories of solid waste shown in Table 1.

Category of solid waste	Typical waste generators	Example of solid waste
Residential	Single and multifamily dwellings	Food wastes, paper, cardboard, plastics, textiles, leather, yard wastes, wood, glass, metals, ashes, special wastes (e.g., bulky items, consumer electronics, white goods, batteries, oil, tires), and household hazardous wastes.).
Industrial	Light and heavy manufacturing, fabrication, construction sites, power and chemical plants.	Housekeeping wastes, packaging, food wastes, construction and demolition materials, hazardous wastes, ashes, special wastes.
Commercial	Stores, hotels, restaurants, markets, office buildings, etc.	Paper, cardboard, plastics, wood, food wastes, glass, metals, special wastes, hazardous wastes.
Institutional	Schools, hospitals, prisons, government centres.	Same as commercial.
Construction and demolition	New construction sites, road repair, renovation sites, demolition of buildings	Wood, steel, concrete, dirt, etc.
Municipal services	Street cleaning, landscaping, parks, beaches, other recreational areas, water and wastewater treatment plants.	Street sweepings; landscape and tree trimmings; general wastes from parks, beaches, and other recreational areas; sludge.
Processing or manufacturing	Heavy and light manufacturing, refineries, chemical plants, power plants, mineral extraction and processing.	Industrial process wastes, scrap materials, off- specification products, slay, tailings.
Agriculture	Crops, orchards, vineyards, dairies, feedlots, farms.	Spoiled food wastes, agricultural wastes, hazardous wastes (e.g., pesticides).

Table 1: Commonly known types of soli	d waste in the Central Business District of
Pretoria	

The management of solid waste generated by businesses in and around Pretoria is a huge task that requires the allocation of adequate resources and technological input as a matter of routine. Strike actions are synonymous with the City of Pretoria, and the task of maintaining the cleanliness of the city is a huge task. In view of the fact that the volume of solid waste generated by businesses that operate in Pretoria is huge, there is a need for introducing efficient methods of collecting, sorting, disposing of and processing solid waste. At times when municipal workers embark on strike actions, the central business district of Pretoria gets overburdened by large volumes of solid waste. For this reason, the task of managing solid waste generated in Pretoria efficiently on a daily basis is by no means simple. The current state of inefficiency in the management of solid waste along with the strategic need for utilization of advanced technology as a means of enhancing efficiency in the management of solid waste in Pretoria (waste gathering, disposal and processing) has been emphasized by various researchers and solid waste specialists in Pretoria [18]. This study could be viewed as an attempt at introducing innovative ways of managing solid waste generated in Pretoria CBD efficiently.

Background of study

The study was conducted against the background of a host of factors that are well known for undermining overall efficiency in the management of solid waste in almost all metropolitan cities of the developing world including Pretoria. The key background factors that are relevant to the City of Pretoria are lack of infrastructural capacity required for the efficient management and processing of solid waste [3, 4, 18], poor awareness about the benefits of lack of socioeconomic incentives to stakeholders proper waste management [19, 20]. relevant to the waste management chain [21], failure to adequately utilize modern waste management and processing technology [22, 23], failure to vigorously enforce municipal bylaws [3, 4], and the absence of an integrated waste management system in Tshwane as is recommended by the United States Environmental Protection Agency (USEPA) for developing nations of the world [24]. The study aims to identify and quantify the key predictors of inefficiency in the management of solid waste in the City of Tshwane. Studies conducted in Sweden by Hage, Soderholm and Berglund [25] and Bernstad, Jansen and Aspegren [26] have shown that cities in the world's developing nations should be using appropriate technology for managing solid waste efficiently, and that such appropriate technological methods could easily be based on the use of local technologies and resources. Qotole, Xali and Barchiesi [27] have proposed a model for the commercialization of solid waste in major South African cities including Pretoria. Although their proposed model suggests that the private sector should assist under-performing local governments and municipalities with regards to capacity building, the utilization of appropriate waste management technologies and the building of infrastructure, very little progress has so far been made in this regard. In order for the model to work, it is essential for local governments and municipalities to pool their resources together and implement an integrated waste management plan in which all stakeholders in the entire waste management chain play clearly defined roles. This study attempts to draw attention to areas of chronic under-performance with regards to the management of solid waste in the City of Pretoria along with suitable remedial actions so that where possible, appropriate intervention can be made by the City of Tshwane Metropolitan Municipality (CTMM).

LITERATURE REVIEW

The Palmer Development Group [28] has suggested that efficient management of waste in South African cities must be monitored and evaluated by suitably equipped agencies that are independent of local governments and municipalities as a means of avoiding conflict of interest.

The City of Tshwane Metropolitan Municipality (CTMM) provides municipal services such as the removal and disposal of all types of waste, the assessment of municipal rates, health

and sanitary services, housing services, infrastructural and environmental maintenance and repairs, safety and security, lighting, water and lights, traffic services, and the like to over 3 million people who live and work in Pretoria [3]. The study conducted by Liua, Shia, Qiane, Hud and Penge [35] has found that municipal solid waste can be effectively managed in developing nations by using appropriate technology and the provision of incentives to the private sector. In this regard, the White Paper produced by the South African Department of Environmental Affairs and Tourism [36] encourages the general public to invest in local technologies that could be used for the efficient management of solid waste by local governments and municipalities.

There are 26 international agreements (17 conventions, 4 protocols, 3 treaties and 2 agreements) which pertain to integrated pollution and waste management. Of these 26 agreements, 19 have been acceded to or ratified by South Africa [36]. Legislation in South African fully or partially covers 12 of these international agreements: Prevention and Combating of Pollution of the Sea by Oil Act (6 of 1981) and regulations; International Convention relating to Intervention on the High Seas in Cases of Oil Pollution Casualties Act (64 of 1987); Dumping at Sea Control Act (73 of 1980); Prevention of Pollution from Ships Act (2 of 1986) and regulations; Conservation of Agricultural Resources Act (43 of 1983); Nature Conservation Ordinances of the various provinces; Antarctic Treaty Act (60 of 1996); and Nuclear Energy Act (113 of 1994).

Some of the methods proposed by South African researchers include the commercialization of solid waste [27], forging strategic partnerships between the public and private sector [28], the effective implementation of municipal bylaws and legislative codes [63], the use of appropriate local technology [37] and techniques that are based on decomposition of waste accumulated in landfills used by municipalities [38, 39]. Public awareness campaigns and the provision of health education on personal hygiene and environmental sanitation have been used in developing cities such as Nigeria [40] in accordance with guidelines set out by the United Nations Environmental Programme [41], the United Nations Development Programme [42], and the World Health organization [43].

According to the United Nations Development Programme (UNDP), South Africa has one of the most advanced constitutions in the world in terms of the protection of human rights including the right to a safe and healthy environment [42]. In addition, it has some of the most progressive environmental legislation in the world. However, there is a perception that the national government is reluctant to enforce regulations and legislations that are meant to protect the environment from abuse. Examples of such areas are failure to enforce pollution and waste-related legislation. A public perception exists that the national government is not doing enough to enforce legislation in areas related to proper waste disposal and the reduction of environmental pollution. Industrial waste is known to pollute drinking water in some areas of South Africa. According to the United Nations Development Programme (UNDP), this failure of the national government could be attributed to lack of awareness, lack of resources, poverty, unemployment and general lack of regard for environmental sanitation by major industrial and mining companies [42].

Results obtained from the community survey conducted by Statistics South Africa in 2007 [44] have shown that task of maintaining cleanliness in the major metropolitan cities of South Africa constitutes a huge undertaking for local governments and municipalities due to an influx of migrant labourers into towns and cities in search of job opportunities. In view of the fact that migrant labourers add pressure to towns and cities by competing for meagre

resources and services that are provided to local inhabitants of towns and cities, municipalities are often forced to overspend budgets and resources that are allocated for the provision of essential municipal services such as waste management.

The study conducted by Snyman and Vorster [18] has pointed out that the current state of efficiency in the management of solid waste in Pretoria is grossly inadequate by international standards. The authors have pointed out that landfills are used as a predominant method of waste disposal in Pretoria, and that there is a dire need for utilizing modern technologies of waste disposal and processing. Examples of modern technologies that are appropriate for the efficient management of solid waste in the city of Pretoria have been pointed out by Hao, Wu, Wu, Sun and Chen [45] and Mertoglu, Calli and Inane [46]. Landfills are used extensively by the CTMM for dumping solid waste, and these landfills are not managed by using suitable and appropriate technology according to the research work conducted by Snyman and Vorster [18]. The treatment of landfills in major metropolitan municipalities often requires the use of advanced technology, as is shown by Silva, Dezotti and Sant'Anna Jr [47] and Wiszniowski, Surmacz-Gorska, Robert and Weber [48]. These advanced technological methods have yet to be developed in South Africa. In this regard, the proposal made by Ootole, Xali and Barchiesi [27] to commercialize the management of solid waste in Pretoria needs to be explored further by the CTMM in collaboration with the relevant stakeholders and the private sector. Based on standards set out by the United States Environmental Protection Agency [49] as well as Kuhre [50] for the efficient management of solid waste in urban centres, a comprehensive monitoring and evaluation mechanism must be used by South African local governments and municipalities, as has been pointed out by the Palmer Development Group [28].

Wilson and Scheinberg [7] have recommended the use of public awareness campaigns, door to door collection of waste, source segregation of non biodegradable waste, the recycling of waste to useful products such as plastic mats and waste paper products, and the implementation of composting by using vermi-compost technology, and the provision of sanitary education as a means of maintaining efficiency in proper waste disposal. Based on research conducted in Mexico City by Sierra-Vargas et al. [51] the accumulation of solid and liquid waste in a large metropolitan area such as Pretoria is no less risky than heavy pollution from automobiles and heavy industries in terms of causing diseases such as asthma. Swilling and Hutt [52] have reported that a city as large and populated as Pretoria needs a well integrated strategic environmental assessment plan that could be used for monitoring and evaluating efficiency in proper waste removal and disposal from food outlets in order to ensure public health and environmental sanitation. The Community Survey conducted by Statistics South Africa [44] has clearly pointed out that the massive influx of people into Pretoria from all over South Africa constitutes a significant challenge in terms of providing basic sanitary services.

The City of Tshwane Metropolitan Municipality [3] experiences challenges in terms of rubbish collection and waste disposal. These challenges are a result of lack of capacity in terms of staff and specialized vehicles required for rubbish removal and waste disposal, frequent wage disputes and protracted industrial strike actions by employees responsible for rubbish removal and waste disposal, lack of technical skills required for advanced waste processing, large influx of migrants from rural areas who often come in search of employment opportunities, lack of regard for recommended methods of waste disposal by inhabitants, failure of inhabitants and visitors to effectively utilize rubbish bins and waste dumping sites, failure of a sizeable proportion of inhabitants to pay for municipal services

promptly, an increase in road accidents, abuse of street names and power lines, damage to traffic lights, etc, shortage of roads to accommodate the sharply increasing number of vehicles, shortage of traffic and environmental safety officers responsible for enforcing municipal bylaws related to proper waste disposal, and others. The study by Khan [53] has found that health education, door-to-door campaigns, legislation as well as incentives should be used for ensuring efficiency in waste collection, removal and disposal. Khan [53] has found that the proper and efficient disposal of solid and liquid waste is an essential public service that must be accomplished using legislation and municipal bylaws as a tool. Based on a comprehensive environmental study conducted in Indonesia, Mangkoedihardjo et al. [54] have argued that legislative intervention is essential for the efficient disposal of waste in most developing nations of the world such as Indonesia and South Africa.

Based on a study conducted in the Vidgaon village of India, Nimbalkar et al. [55] have reported that poverty among the masses and massive influx of immigrants from rural to urban areas constitute a major challenge to city councils in terms of maintaining environmental cleanliness and proper waste removal and disposal. Rao [56] has also arrived at a similar conclusion based on a study conducted in India.

According to the United States Environmental Protection Agency (USEPA), environmental pollution is defined as the introduction into the environment of any substance including radiation, heat, noise and light that has or results in direct harmful effects to humanity or the environment, or that makes the environment less fit for its intended use [24]. According to a report produced by the World Health Organization (WHO) on the importance of proper waste disposal to primary health care, illiteracy and poor waste disposal are significantly associated with each other [43]. The ability of today's generation to efficiently utilize the environment and dispose of waste contributes to the quality of life of tomorrow's generation. While the developed nations are far ahead of Sub-Saharan African countries in terms of the efficient disposal of solid and liquid waste, most of the countries in Sub-Saharan African countries including South Africa are not doing so well according to the United Nations Environmental Programme [41]. This assessment is in agreement with findings by Özkaynaka et al. [57] in which the impact of outdoor sources of hazardous air pollutants was quantified by using a quantitative model that is similar to the one used in this study.

The Department of Environmental Affairs and Tourism [36] has produced a White Paper that attempts at protecting the environment and renewable and non-renewable natural resources such as air, water (fresh & marine), land and all forms of life, natural ecosystems and habitats, spatial surroundings modified or constructed by people, including urbanized areas, agricultural and rural landscapes, places of cultural significance and the qualities that contribute to their value. Roht et al. [58] clearly shows that operational policies and strategies used by the DEAT have been widely tested and successfully implemented in various parts of the world. The DEAT has been working on the core objectives of Agenda 21 of the United Nations [41] since 1992 with partial success. Temporary and casual workers are often used for assisting in waste removal by the CTMM although the method is not always reliable [3]. Often, major cities such as Pretoria employ casual workers to assist in waste disposal. Temporary staff are often hired at the gate or ferried in trucks between depots according to daily requirements. The casual workers are put to work at sorting centres as the need arises. Such casual workers are not entitled to benefits such as medical aid, housing subsidy and salary increase. Their duration of employment ranges from a single day to several months. Such temporary workers are poorly paid and least motivated for doing a proper job [4].

There are regulations that are helpful for ensuring the efficient collection of rubbish and waste from the streets of Pretoria as well as the efficient disposal of waste. Inhabitants of the CBD of Pretoria are entitled to living in a clean environment in terms of Act number 108 of 1996 of the South African constitution as well as the Bill of Rights [59]. Each of the municipal bylaws issued by the CTMM [3] needs to be implemented vigorously, and is a reliable indicator of service delivery and performance. As has been pointed out by the Palmer Development Group [28], municipal bylaws have not been implemented efficiently due to various reasons such as lack of capacity and resources that are required for service delivery and law enforcement.

Godfrey [60] has argued that the general public must be thoroughly educated and adequately informed about the benefits of proper waste management, and that legislative measures and municipal bylaws must not be implemented in isolation from the implementation of health and environmental education campaigns. A study conducted by the research and planning agency LEAP [61] has shown that the effective implementation of municipal bylaws and legislative codes issued by the South African Department of Environmental Affairs and Tourism is critical for an essential requirement for ensuring efficiency in the management of waste in the major metropolitan cities in South Africa including Pretoria.

Reliable statistical data on waste management is crucially required by all spheres of government for the purpose of allocating adequate resources, integration service delivery programmes, monitoring and evaluation exercises, for exercising informed planning and decision-making, to comply with monitoring and enforcement activities, to promote community participation through public access to information, human, infrastructure and financial resource management and policy development. Plans of actions carried out by the various local municipalities are poorly integrated and coordinated [61]. These needs for waste information correspond closely with key waste management challenges currently facing the country. The approach made by the national government must be in line with the approach made by the various local governments and municipalities. However, this has not been done adequately.

According to Heeks [62], although the Waste Information System (WIS) had the potential to dramatically improve efficiency in waste management, it was not implemented due to lack of resources and suitable action plans of activities. In most cases, the various stakeholders were not even properly motivated by the merits and potential benefits of the WIS. As a result, the WIS did not yield its expected results. Some of the stakeholders have failed to embrace the principles of WIS. In order for information systems to be sustainable, one must understand the underlying motivations or needs of key stakeholders. The WIS must be shown to be sustainable and feasible in terms of available resources and level of skills. It should also be shown to yield practical benefits by creating employment opportunities for the unemployed youth, improving the quality of life and environmental sanitation, and by attracting new businesses into the central business district of Pretoria.

Heeks [62] argues that the WIS cannot lead to the improved management of waste in the country in its present form, and that it should be re-formulated after due consultation with the relevant stakeholders. He also calls for an awareness campaign as well as the provision of adequate resources and skills training.

The recommendation made by LEAP is in agreement with findings reported by Heeks [62] and the Gauteng Johannesburg Metropolitan Council [63]. Federico, Rizzo and Traveso [64]

have found that waste management programmes must be integrated with the relevant service delivery programmes in public health and environmental sanitation in order to succeed. With a view to ensure optimal efficiency in the management of solid waste, this research work will assess the degree to which municipal bylaws and regulations that are relevant to solid waste management are adhered to by businesses conducting business in the City of Tshwane. The bylaws and regulations are relevant to all stages of the waste management chain (sorting of waste at source, collection, treatment, disposal and processing). The model considers 4 categories of solid waste (municipal, organic, plastics, an electronic), and is designed for realizing a sustainable and optimally efficient solid waste management system for the City of Tshwane. The model is accompanied by a comprehensive monitoring and evaluation plan that could be used for assessing the current status-quo, and for assessing and evaluating efficiency in waste management at each stage of the waste management chain. Norms and standards set out by the South African National Department of Environment and Tourism (DEAT) are used for benchmarking [65].

According to the South African Department of Environmental Affairs and Tourism (DEAT), only 43.6% of the 1203 landfill sites in South Africa are known to be permitted and of those permitted, little to no information exists on their compliance with permit conditions. Of the non-permitted/unknown permit status landfill sites, in excess of 90% are thought to be municipal landfills [65]. The biggest culprit of non-compliance in the land filling of waste, it would therefore appear, is government itself. The need for cooperative governance between the three spheres of government, supported by reliable, accurate waste information is therefore imperative in improving the levels of compliance with waste and pollution legislation. Increasing compliance with environmental quality and protection legislation and authorizations has been identified as a strategic objective of DEAT, and this is an objective that needs to be supported by reliable and comprehensive data and research.

Özkaynaka, et al. [57] have used epidemiological measures of effect such as odds ratios and risk ratios to quantify the relationship between exposure to hazardous pollutants of the environment and the quality of life of the community. The study clearly shows that proper waste disposal contributes significantly to the overall quality of life of people by minimizing environmental pollution. The efficient disposal of waste by ordinary citizens depends on socio-economic and demographic factors such as level of education, type of occupation and respect for observing municipal by-laws related to waste disposal.

Municipal bylaws that are relevant to waste management are not enforced with full vigour. Although more than 25% of small and medium-sized businesses as well as informal traders operating in the City of Tshwane generate waste in the course of conducting routine business [3, 4], the pace at which such waste is properly collected and disposed of by municipal workers employed by the City of Tshwane is significantly lower than the pace at which waste is generated. This situation is exacerbated at times of civil action carried out by municipal workers responsible for routine waste collection and disposal. Taxi ranks, the various sources of solid and liquid waste and pollution, bus stations, liquor stores, petrol stations, schools, shops, open markets, garages, etc are well known contributors for the generation of high volume of solid and liquid waste in the CBD of Pretoria. There is room for improvement of the current level of efficiency in the management of waste produced by the various sources of solid and liquid waste and pollution. In terms of the strategic plan adopted by the South African Department of Environmental Affairs and Tourism (DEAT) to improve efficiency in the management of waste, the various sources of solid and liquid waste and pollution are a major stakeholder, and no progress can be made unless otherwise the various sources of solid and liquid waste and pollution are involved in the implementation of the plan drawn up by the DEAT [65].

There is a significant accumulation of solid waste especially in townships such as Mamelodi and Marabastad, and at the various taxi ranks in and around the City of Pretoria. There is a shortage of essential facilities such as trash cans, seats, shelters, public toilets and clean tap water at taxi ranks and public gathering arenas. Some of the various sources of solid and liquid waste and pollution do not have properly functioning toilets and washrooms although the proper functioning of such facilities is an essential requirement for business. The various sources of solid and liquid waste and pollution, taxi ranks and public gathering arenas are often characterized by bad smell and a large accumulation of solid and liquid waste. Such places are conducive for the spread of communicable diseases such as food poisoning and diarrhoea unless they are controlled and managed efficiently by the CTMM. Not enough is known so far about the extent to which efficiency in waste disposal can be improved in view of the fact that there is lack of empirical evidence in this area of research interest. Not enough research has been done in the CBD of Pretoria to assess and identify factors that affect efficiency in proper waste disposal.

There is a shortage of empirical evidence based on a properly designed multivariate modelling in areas related to the quantification of factors that contribute to poor environmental sanitation and the accumulation of solid and liquid waste in the CBD of Pretoria. Low level of awareness in areas related to recycling, classification of waste at source and composting plays a major role in compounding the current lack of efficiency in the efficient utilization of resources such as broken bottles, empty cans, used goods, plastic bags, etc. Far from being put to economic use, broken bottles are harming pedestrians and school children in addition to polluting the environment and decreasing the beauty of the City in the eyes of visitors and residents. Ratepayers are disgusted with the level of incompetence, inefficiency and indifference. Some irresponsible inhabitants of the city and visitors who travel to the city from outside do not have adequate respect for environmental sanitation, and demonstrate total disregard for cleanliness of the streets of the city. Such irresponsible inhabitants and visitors often throw away rubbish on the streets. Examples of such rubbish are beer bottles, empty cans and used food packages. Empty bottles break into harmful pieces as they are thrown onto the streets from moving taxis and private cars. There is a need to have irresponsible inhabitants and visitors educated and disciplined so that they show respect for environmental sanitation and cleanliness. Experience drawn from large municipalities in Nigeria, Cameroon, Sweden, Indonesia, China and the United States shows that these deeply ingrained problems could be addressed adequately by enforcing the relevant municipal bylaws with vigour by promoting health and environmental education, and by providing socioeconomic incentives to stakeholders and role-players in the waste management chain [6, 7, 12, 13, 15, 17, 18, 20, 21, 22, 23, 24, 25, 28, 29, 40, 45, 54].

A review of the literature shows that in cities as big as Tshwane, modern waste treatment technologies such as composting, incineration, landfills, recycling, and window composting should be used for solid waste management [24, 41]. Modern solid waste management techniques such as landfills, incineration, recycling, biological processing, energy recovery, radio frequency identification tags, global positioning system tracking integrated software packages, rear vision cameras, and the like are used in cities such as Geneva and Stockholm [25]. Examples of advanced solid waste treatment technologies that are suitable for the city are anaerobic digestion, ethanol production, biodrying, gasification, in-vessel composting, mechanical biological treatment, mechanical heat treatment, plasma arc waste disposal,

pyrolysis, sewage treatment and tunnel composting are also highly appropriate technologies for the city [49]. In the City of Tshwane, the management of solid waste involves collection, transportation, processing or disposal, management and monitoring of waste materials. The South African Department of Environmental Affairs and Tourism [65] promotes the use of modern technologies and evaluation techniques that are necessary for the efficient management of waste although advanced technologies that are used for waste management and evaluation are poorly utilized in South African cities including the City of Tshwane [3].

Globally, diverse methods have been used for improving efficiency in the collection and disposal of solid waste. The most commonly used methods are designed for ensuring efficiency in solid waste management, and are outlined in the UN-Habitat's Third Global Report of 2010 [21]. In the world's cleanest cities, the following methods are used: integrated sustainable waste management, the enforcement of municipal bylaws, the promotion of primary health care services and environmental sanitation, the promotion of health education on proper waste management, financial sustainability, institutional framework, good governance, community based campaigns of awareness, the provision of incentives for good performance in the collection of solid waste, process flow diagrams, as well as monitoring and evaluation programmes designed for the assessment of municipal service delivery programmes [22-25].

In this study, assessment of efficiency in waste management was made by using the classic structural time-based model constructed by Tchobanoglous, Theisen and Vigil [29] as well as adherence to municipal bylaws. The City of Tshwane uses the model for assessing overall efficiency in the collection of solid waste by municipal service providers. The model is suitable for assessing efficiency in the collection of solid waste from fixed containers that are used for depositing solid waste by businesses and ordinary residents. The model assesses overall efficiency as a function of time taken for the management of waste.

Objectives of study

The aim of this research is to identify and quantify factors that affect overall efficiency in the management of solid waste generated by businesses that operate in the City of Tshwane. Based on data collected from a random sample of n = 1,034 businesses operating in the City of Tshwane, the research article aims to:

- 1. Assess the current state of solid waste management with regards to type of wastes and quantities of waste generated,
- 2. Identify key factors that affect efficiency in the management of solid waste, and
- 3. Assess the degree to which businesses adhere to norms and standards that are recommended for businesses in terms of solid waste disposal.

CONCEPTUAL FRAMEWORK OF STUDY

The conceptual framework of this study is based on a collaborative, feasible and mutually beneficial programme for the efficient management of solid in Pretoria. The key stakeholders of the framework are the City of Tshwane Metropolitan Council (CTMM), businesses and institutions that operate in the CBD of Pretoria, ratepayers who pay for waste removal services, the South African Department of Environmental Affairs and Tourism (DEAT), the South African Department of Health, Civil Society, academic and research institutions, the World Health Organization (WHO), members of the press and non-governmental

organizations (NGOs). The conceptual framework is based on proven and tested methods of managing solid waste efficiently in the City of Kuala Lumpur, Malaysia on a sustainable basis. The framework proposes a model in which the unemployed youth who reside in Pretoria CBD be employed for the purpose of gathering and managing waste, and for providing health education on the benefits of the proper disposal of waste, personal hygiene and environmental sanitation. Businesses and rate payers would contribute minimal fees to finance this operation. Although the CTMM is responsible for waste removal and disposal, it does not provide health education and environmental awareness programmes at the grassroots level. The framework would guarantee job creation, environmental sanitation, the efficient disposal of waste, and improved quality of life in Pretoria CBD. The CTMM would establish bilateral agreements with donors, multilateral agencies such as the WHO and NGOs for soliciting technical and financial support. The CTMM would establish agreements with academic and research intuitions with a view to promote efficiency in waste management and disposal as well as environmental sanitation programmes. The ultimate beneficiaries of the Programme are the citizens who live in Pretoria CBD, and especially the urban poor and unemployed. The framework ensures job creation, the alleviation of urban poverty, efficiency in the management and disposal of waste, and the provision of better-managed and more accountable waste removal and disposal services in Pretoria CBD.

A strategic collaboration among the stakeholders has the potential for enhancing the efficient utilization of resources required for waste management, and improving urban sanitation and the quality of life in the CBD of Pretoria. The proposed collaboration will be managed by the Environmental Sanitation Department of the CTMM, and seeks to strengthen efficiency in waste management by harnessing the skills and strategies of networks of regional experts, communities and organizations in the public and private sectors. The conceptual framework will also strengthen local and regional expertise in waste management as assistance is solicited from academic and research institutions that have conducted significant research work in the disposal and management of solid waste.

Mutual consultations among the various stakeholders will be used for bringing together national and local authorities, the private sector, community representatives, and other actors within Pretoria CBD in order to discuss specific problems related to the accumulation and disposal of waste. Such consultations will be most helpful at times when there are industrial actions and labour strikes in Pretoria CBD. Health education shall be provided on a regular basis at taxi ranks, food outlets, bus stations, schools, stores, etc with a view to educate the general population on the importance of proper waste disposal. Businesses will be encouraged to put up rubbish removal bins at all possible junctures and strategic locations. The unemployed youth will be paid by the stakeholders for emptying rubbish removal bins frequently, composting rubbish, and for transporting rubbish to a central location from where it could be picked up and processed. Skills-related and technical assistance will be sought from academic and research institutions in areas such as the training of the unemployed youth and the issuance of training.

The conceptual framework utilizes local and international networks of expertise that could be used for the efficient management of solid waste in Pretoria CBD on a sustainable basis. The framework is based on mutually beneficial collaboration among the relevant stakeholders, and mobilizes the resources required for ensuring high performance and service delivery. The framework is modelled on the achievement made in the City of Kula Lumpur, Malaysia. The City of Pretoria is comparable with the City of Kula Lumpur with regards to resources required for the implementation of the conceptual framework, physical infrastructure and technical expertise. Implementation of the framework has the potential for improving efficiency in the management of solid waste. That is, it would enable the CTMM to use innovative methods of waste gathering, disposal and management. The framework is based on the time needed to manage solid waste efficiently by using available resources and local technology. As such, it is economically beneficial for the CTMM. The mechanisms proposed in this particular study have been utilized in cities such as Kuala Lumpur, Malaysia for the management of solid waste. The study introduces innovative methods and techniques of waste management that have the potential for reducing the cost of processing solid waste. The study recommends the use of community-based integrative programmes and the promotion of health education and environmental sanitation in the central business district of Pretoria.

METHODS AND MATERIALS OF STUDY Data collection

Data was collected in 2010 from a random sample of 1, 034 businesses operating in the four health sub-districts operating in Pretoria. Eligible businesses were identified based on a sampling frame belonging to Statistics South Africa [1]. Managers and owners of the businesses as well as employees were asked a total of 89 questions related to the type of business they were operating, the type and volume of waste generated, how waste was collected, sorted out, disposed of and managed, the extent of cleanliness and sanitation at the workplace, their socioeconomic and demographic characteristics, as well as their personal opinion on the benefits of the proper management of waste.

Stratum or category of solid waste	Sample size to be selected from stratum
Industrial	104
Commercial	753
Institutional	21
Construction and demolition	58
Municipal services	56
Processing or manufacturing	28
Agriculture	14
Total	1,034

Table 2: Sample size to be selected from each stratum

Statistical methods of data analyses

Efficiency in solid waste management was assessed by using the model proposed by Tchobanoglous, Theisen and Vigil [29] for estimating the median time required for the

collection of solid waste from the businesses that took part in the study. The model measures efficiency in the collection of solid waste from fixed locations and containers based on the mathematical expression shown below in (1):

$$E = 1 - A + B$$
(1)

In (1), A denotes an off-route factor, and B is a measure of off-route activity time by individuals collecting waste. In cases where A = B, the collection of solid waste becomes perfectly efficient. The larger the difference between A and B, the less efficient becomes the waste collection procedure. The time required per trip is given by the expression shown below in (2):

$$t = \frac{t_1 + t_2 + Y}{1 - A} \quad \dots \dots \dots (2)$$

In (2),

t is the time required for waste collection from a fixed site per trip

 t_1 is equal to pick up time of container at the site of collection

 t_2 is equal to on-site time per trip

Y denotes the total haul time during waste collection

X denotes the average round-trip haul distance per trip

Since the relationship between Y and X follows simple linear regression, we have

$$Y = \beta_0 + \beta X \quad \dots \dots \quad (3)$$

In (3), β_0 is the constant term in the simple linear regression of Y on X, and β is the regression coefficient in the simple linear regression of Y on X. In cases where waste is collected from fixed sites, the time required to collect waste per trip follows a stationary model, and is expressed by the expression shown below in (4):

 $t_1 = P + Q + R$ (4)

In (4), P is the time taken to pick up a container that is full of solid waste;

Q is the time taken to unload an empty container; and

R is the time taken for driving from one container to the next container

The number of trips per day is given by the expression shown below in (5):

$$n = Y(1-A) - \frac{(t_3 + t_4)}{t}$$
(5)

In (5), variable t is the time required for waste collection from a fixed site per trip; t_3 is the time required to drive from dispatch station to first container location to be served by the day; and t_{4} is the time required to drive from the last container location to be served by the day to the dispatch station.

The time taken per trip is given by the expression shown below in (6):

$$t_5 = \frac{t_6 - t}{Y}$$
(6)

In (6), variable t_6 is the number of trips made in a week. The number of trips made per week is given by the expression shown below in (7):

$$t_6 = \frac{K}{RQ} \quad \dots \dots \dots (7)$$

In (7), variable K is a measure of the volume of waste generated in a week in cubic meters per kg; R is the average size of the container in cubic meters per kg; and Q is the weighted average container utilization factor.

Since
$$t = \frac{t_1 + t_2 + Y}{1 - A}$$
 as shown above in (2), it follows that $t_1 + t_2 + Y = (1 - A)t$ (8)
Efficiency can thus be measured by the following relationship:

$$E = \frac{Y + t_1 + t_2 + Bt}{t} = \frac{(t_1 + t_2 + Y) + Bt}{t} = \frac{(1 - A)t + Bt}{t} = 1 - A + B \quad \dots \dots \dots (9)$$

Values of *E* in the expression E=1-A+B were calculated for each of the 1, 034 businesses that took part in the study. Businesses for which values of E fell below the median were used for identifying businesses in which efficiency in waste management was inadequate. Businesses for which values of E were greater than or equal to the median were used for identifying businesses in which efficiency in waste management was deemed adequate. That is,

 $Overall efficiency = \begin{cases} Inadequate & if score is below the median of E \\ Adequate & if score is greater than or equal to the median of E \end{cases}$

Pearson's chi-square tests of association [61] were used for the screening of variables. This was done by performing two-by-two tests of associations between overall efficiency in the management of waste and the various socioeconomic, demographic, sanitary, environmental and health related variables on which data was gathered as part of the study. At the 5% level of significance, an association was deemed significant if the P-value was below 5%. The dependent variable of study is a measure of overall efficiency in the management of waste. The variable has only 2 possible values (Inadequate, Adequate). Since the dependent variable of study is dichotomous, binary logistic regression analysis [62] was used in order to identify key predictors of inefficiency in the management of waste. Multilevel analysis [63] was used in order to estimate the extent of variation with regards to efficiency in the management of waste by geographical zone and category of business enterprise. Multilevel analysis is a statistical procedure that enables planners and policy makers to allocate resources that are needed for intervention based on the extent of variation observed at various hierarchical levels. In this study, the two hierarchical levels depending on which efficiency in waste management varies are geographical location and category of business.

The degree of adherence to municipal bylaws and guidelines for the disposal of solid waste was measured by using a 2-point scale. The guidelines used for measuring adherence were the ISO 14000 and ISO 14031 guidelines for environmental management and performance monitoring in the management of waste and the environment [50, 64, 65]. At each of the 1, 034 businesses selected for the study, the degree of adherence to municipal bylaws and procedures recommended for solid waste management by businesses by the City of Tshwane was graded based on ISO 14000 and ISO 14031 guidelines. That is, at each businesse enterprise, binary grades (Adequate, Not adequate) were allocated as a measure of compliance according to criteria stipulated in ISO 14000 and ISO 14031 guidelines. The binary variable created for assessing degree of adherence to ISO guidelines or municipal bylaws. Category 2 of the binary variable represented adequate adherence to ISO guidelines or municipal bylaws.

The purpose of conducting binary logistic regression analysis was to identify influential predictors of inefficiency in the management of waste among businesses operating in the City of Tshwane. The use of binary logistic regression analysis was appropriate as the dependent variable of study had only 2 possible vales (1, 0). In binary logistic regression analysis, odds ratios were used as an epidemiological measure of effect. At the 5% level of significance, influential predictors of inefficiency in waste management are characterized by estimated odds ratios that differ from 1 significantly, P-values that are smaller than 0.05, and 95% confidence intervals of odds ratios that do not contain 1. The adequacy of the fitted logistic regression model was assessed by using standard diagnostic procedures such as the classification table, the Hosmer and Lemeshow goodness-of-fit test, receiver operating characteristics (ROC) plots, and sensitivity/specificity plots [62].

RESULTS OF STUDY

Table 3 shows a comparison between businesses that were efficient with regards to solid waste management with those that were not. It can be seen from the table that 857 of the 1, 034 businesses (83%) were efficient, while the remaining 177 businesses (17%) were inefficient. The table shows that a significant percentage of businesses located in the central and western parts of the city were inefficient, whereas businesses located in the eastern and northern parts of the city were by and large efficient. The table shows that 76% of operators who managed businesses that were efficient with regards to waste management have acquired formal education at college level or better. In general, businesses that are inefficient in the management of waste are relatively younger, poor in personal hygiene and cleanliness of premises, and are by and large commercial. The majority of old businesses (6 years or more) are efficient in waste management. Businesses that are operated by owners are more efficient in comparison with businesses that are operated by employed managers. Utilization of private contractors for waste removal and management, regular inspection of premises by municipal workers, familiarity with the South African White Paper on waste management, source reduction of waste, good perception on the benefits of proper waste management, and adherence to waste management regulations recommended by the municipality are much more common among businesses that are efficient in waste management.

Characteristic	Efficient (n=857)	Inefficient (n=177)
Category of business	Agricultural: 1%	Agricultural: 1%
	Commercial: 71%	Commercial: 83%
	Construction: 6%	Construction: 3%
	Industrial: 11%	Industrial: 3%
	Institutional: 2%	Institutional: 3%
	Municipal: 6%	Municipal: 5%
	Manufacturing: 3%	Manufacturing: 2%
Geographical location of	Central: 31%	Central: 41%
business in the City of	East: 21%	East: 13%
Tshwane	West: 19%	West: 23%
	North: 17%	North: 13%
	South: 12%	South: 10%

Table 3: Comparison	with regards to ov	verall efficiency in	waste management
Tuble 51 Comparison	with regulas to or	ciun chicichey m	maste management

Age of business in years	Less than a year: 5% 1 to 2 years: 6% 3 to 5 years: 29% 6 years or more: 60%	Less than a year: 34% 1 to 2 years: 35% 3 to 5 years: 15% 6 years or more: 16%
Status of business operator	Owner: 76% Manager: 24%	Owner: 31% Manager: 69%
Level of education of operator	College level or better: 76% High school level or less: 24%	College level or better: 39% High school level or less: 61%
Gender of operator	Male: 76% Female: 24%	Male: 73% Female: 27%
Use of private contractor for waste management	Yes: 23% No: 77%	Yes: 16% No: 84%
Sorting waste	Yes: 76% No: 24%	Yes: 45% No: 55%
Adherence to waste management regulations	Yes: 95% No: 5%	Yes: 52% No: 48%
Personal hygiene	Excellent: 9% Very good: 43% Satisfactory: 37% Less than satisfactory: 10% Poor: 1%	Excellent: 0% Very good: 21% Satisfactory: 41% Less than satisfactory: 33% Poor: 5%
Perception on the benefits of proper waste management	Excellent: 3% Very good: 56% Satisfactory: 35% Less than satisfactory: 5% Poor: 1%	Excellent: 1% Very good: 6% Satisfactory: 29% Less than satisfactory: 55% Poor: 9%
Source reduction of waste	Yes: 80% No: 20%	Yes: 52% No: 48%
Amount of waste generated in 1, 000 kg per week	$\leq 0.9: 25\%$ 1 to 1.9: 46% 2 to 4.9: 27% 5 to 9.9: 2% $\geq 10: 0\%$	$\leq 0.9: 49\%$ 1 to 1.9: 42% 2 to 4.9: 8% 5 to 9.9: 1% $\geq 10: 0\%$
Enough trash cans available for customers Regular inspection of premises by municipality Familiarity of operator	Yes: 77% No: 23% Yes: 84% No: 16% Yes: 86%	Yes: 46% No: 54% Yes: 41% No: 59% Yes: 28%
with White Paper on Waste Management	No: 14%	No: 72%

Two-by-two Pearson chi-square tests of associations [61] was used for performing a preliminary screening of influential factors that were significantly associated with inefficient management of waste. Table 3 shows a list of 15 factors that are significantly associated with poor or less than satisfactory waste disposal at the 0.001 level of significance. In each of the tests, the outcome variable of study, Y, was defined as follows:

 $Overall \ efficiency = \begin{cases} Inadequate & if score is below the median of E \\ Adequate & if score is greater than or equal to the median of E \end{cases}$

At the 0.001 level of significance, significant associations are characterized by large observed chi-square values and P-values that are smaller than 0.001. Table 4 provides a list of 15 variables that are significantly associated with inefficient waste management.

Table 4: List of top 15 significant associations from Pearson's chi-square testsof associations with overall efficiency in waste disposal (P < 0.001)</td>

Variable of study associated with	Observed chi-	P-value
overall efficiency in waste management	square value	
Adherence: Degree of adherence to	716.04	0.0000
waste management regulations		
Perception : Perception on the benefits of	705.99	0.0000
proper waste management		
Trashcan: Availability of enough trash	701.42	0.0000
cans for customers		
Status: Status of person operating	469.21	0.0000
business (owener or employee)		
Frequency : Frequency at which business	299.57	0.0000
premises are inspected by municipality		
Hygiene: Personal hygiene of employees	251.72	0.0000
at business premises		
Maintenance: Degree of maintenance of	167.09	0.0000
trash bins and their environment in		
business premises		
Cleanliness: Degree to which business	139.88	0.0000
premises are kept clean		
Education: Level of education of	127.52	0.0000
business operator		
Inspection: Regular inspection of	115.14	0.0000
premises by municipal workers		
Volume: Volume of waste generated	109.59	0.0000
Contractor: Use of private contracors	104.44	0.0000
for waste management		
White Paper: Familiarity with White	103.87	0.0000
Paper on waste management		
Implement : Degree to which a waste	100.11	0.0000
management plan is implemented		
Sort: Sorting waste generated at source	93.12	0.0000

At the 0.001 level of significance, all 15 variables shown in Table 4 are significantly associated with overall efficiency in the management of waste. It can be seen from the table that the top 5 significant variables are: lack of adherence to municipal bylaws and regulations, wrong perception on the potential benefits of proper waste management, failure of businesses to provide customers with enough trash cans, the status of the business operator (owner or employee), and the frequency at which business premises are inspected by municipal sanitation and health workers, in a decreasing order of strength.

Table 5, below, shows results estimated from binary logistic regression analysis [62]. Results from binary logistic regression analysis are theoretically more reliable than results from Pearson's chi-square tests of association [61]. This is because the measure of effect in binary logistic regression is the odds ratio, and not two-by-two significant associations. Logistic regression analysis allows multivariate analysis involving several variables that are influential over waste disposal. It is also possible to assess the reliability of the fitted logistic regression model based on highly reliable diagnostic tests such as the classification table, the likelihood ratio test, the Hosmer-Lemeshow goodness-of-fit test, as well as receiver operating characteristic (ROC) and sensitivity/specificity plots [62].

At the 0.05 level of significance, influential predictor variables are characterized by estimated odds ratios that differ from 1 significantly, P-values that are smaller than 0.05, and 95% confidence intervals of odds ratios that do not contain 1. Accordingly, it can be seen from Table 4 that all 4 predictor variables are significant at the 0.05 level. The results show that efficiency in the proper management of solid waste is significantly influenced by 4 predictor variables. These 4 influential predictor variables are lack of adherence to municipal bylaws and regulations [OR=9.17; 95% C. I. = (6.42, 12.54)], wrong perception [OR=8.81; 95% C. I. = (6.01, 11.35)], failure to provide customers with enough trash cans [OR=3.15; 95% C. I. = (1.46, 5.87)], and the operation of businesses by employed managers [OR=2.69; 95% C. I. = (1.66, 4.32)], in a decreasing order of importance.

Variable	Unadjusted OR and 95% C.I. ⁺	P-value	Adjusted* OR and 95% C.I. ⁺
Poor adherence	9.18 (6.43, 12.55)	0.000	9.17 (6.42, 12.54)
Wrong perception	8.84 (6.02, 11.36)	0.000	8.81 (6.01, 11.35)
Failure to provide customers with enough trash cans	3.17 (1.48, 5.89)	0.000	3.15 (1.46, 5.87)
Status of operator (Owner, manager)	2.71 (1.69, 4.35)	0.000	2.69 (1.66, 4.32)

 Table 5: Odds Ratios estimated from binary logistic regression analysis

*Adjustment was done for level of education, gender and location of business

+ C. I. = Confidence Interval

The adjusted odds ratio of the variable poor adherence is 9.17. This shows that a business that is managed by an operator who fails to adhere to guidelines set out for waste management by

the City of Tshwane is 9.17 times as likely to be inefficient in the proper management of solid waste in comparison with a business that is managed by an operator who adheres to recommended guidelines. The adjusted odds ratio of the variable wrong perception is 8.81. This shows that a business operator who has the wrong perception on the benefits of proper management of solid waste is 8.81 times as likely to be inefficient in comparison with another business operator with the correct perception on the benefits of proper waste management. The adjusted odds ratio of the variable failure to provide customers with enough trash cans is 3.15. This shows that a business in which there are not enough trash cans for customers is 3.15 times as likely to be inefficient in the management of solid waste in comparison with a business in which enough trash cans are provided to customers. The adjusted odds ratio of the variable status of operator is 2.69. This shows that an outlet that is operated by someone who does not own the business being operated is 2.69 times as likely to be inefficient in the proper management of solid waste in comparison with an outlet that is operated by someone who actually owns the business. Adjusted odds ratios are more reliable than unadjusted odds ratios in epidemiological studies of this kind. In this study, the estimated odds ratios were adjusted for two potential confounding variables (level of education of business operator and the physical location of business). The adjusted odds ratios did not differ much from the unadjusted odds ratios, thereby showing that none of the variables used for adjustment was a confounding variable. There was no effect modifying variable.

Goodness-of-fit tests

The reliability of the fitted logistic regression model was assessed using standard goodnessof-fit tests suitable for binary logistic regression analysis [62]. The classification table showed that the fitted model had an overall percentage of correct classification of 88.78%, a percentage sensitivity of 57.06%, and a percentage specificity of 95.33%. This shows that the fitted model is highly reliable in accurately classifying observations. The Hosmer-Lemeshow goodness-of-fit test gave a P-value of 0.0701, a figure which is greater than 0.05, thereby showing that there was no reason to doubt the reliability of the fitted logistic regression model. Figure 1 below shows a plot of sensitivity/specificity versus probability cut-off point. The two plots cross each other fairly close to the vertical axis. This shows that the fitted model is adequately sensitive and specific.

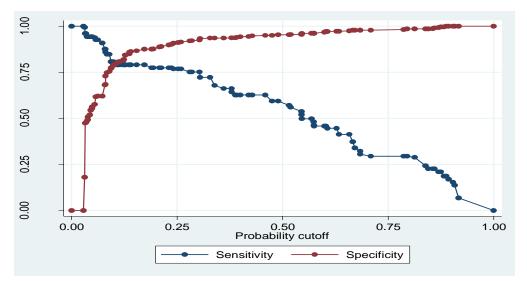


Figure 1: Plot of sensitivity/specificity versus probability cut-off point

Figure 2 below shows a Receiver Operating Characteristic (ROC) plot. The magnitude of the area that lies under the ROC plot is a measure of variation explained by the fitted logistic regression model. In this case, the area under the ROC plot is 88.82%, a figure that is significantly above 75%. The unexplained proportion of variation is equal to 11.18%. The large proportion of explained variation and the small proportion of unexplained variation show that the fitted model is highly reliable in explaining variability in waste disposal as a function of the explanatory variables used for logistic regression analysis.

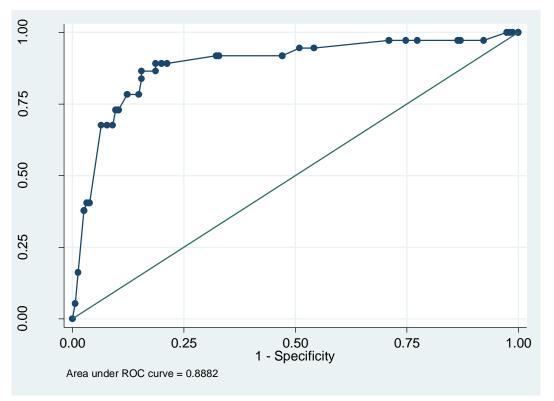


Figure 2: Area under the Receiver Operating Characteristic (ROC) plot

The likelihood ratio test is used for assessing the collective efficiency of the 8 predictor variables used for performing binary logistic regression analysis. At the 5% level of significance, a P-value that is smaller than 0.05 shows that the 8 predictor variables used for performing binary logistic regression analysis are jointly efficient. In this case, the P-value from the likelihood ratio test is equal to 0.000, a figure that is smaller than 0.05. This small P-value shows that the 8 predictor variables used for binary logistic regression analysis are collectively efficient in accounting for failure in the proper disposal of waste.

Multilevel analysis [63] was used in order to estimate the extent of variation with regards to efficiency in the management of solid waste by category of business and geographical location. Comparison was made among 7 categories of waste generated by businesses operating in the central business district of Pretoria (agricultural, commercial, construction, industrial, institutional, municipal, and processing and manufacturing) as well as 5 geographical locations (central, east, west, north, south). The results showed that there were significant differences among the 7 categories of waste (23.05%). The results also showed that there were significant differences among the 5 geographical locations (19.45%).

results indicated that businesses within the same category of waste and geographical location were equally efficient in the management of solid waste.

DISCUSSION OF RESULTS OF STUDY

The key objective of research was to identify and quantify factors that affect efficiency in the management of solid waste by businesses that are operated in the City of Tshwane. The study has shown that efficiency in the management of solid waste is significantly influenced by 4 key predictor variables of study. These 4 influential predictor variables are lack of adherence to municipal bylaws and regulations, wrong perception on the potential benefits of proper waste management, failure to provide customers with enough trash cans for waste disposal, and the practice of operating businesses by employed managers, in a decreasing order of importance. In the City of Tshwane, municipal solid waste consists of everyday items such as product packaging, empty bottles and cans, grass clippings, furniture, clothing, left-over food, newspapers, appliances, paint, batteries, pieces of metals, etc. Such solid waste is generated by businesses, households, schools, hospitals, and visitors travelling into the city on foot or by other modes of transport such as cars, train, taxi or bus. The Health Department of the City of Tshwane [2] has a municipal bylaw that stipulates how solid waste should be packaged, sorted, collected and disposed of by inhabitants of the city. The bylaw encourages inhabitants of the city to practice source reduction of solid waste, recycling, and composting (collecting organic waste such as left-over food and garden refuse, storing these wastes under conditions that are designed to help them break down naturally, and then use the resulting compost as a natural fertilizer). According to the South African National Department of Environmental Affairs and Tourism [4], the disposal and combustion of municipal solid waste is conducted by the use of landfills, the conversion of non-recyclable waste materials into useable heat, electricity, or fuel, combustion, and transfer stations. Although the use of such mechanisms is consistent with the municipal bylaw in the City of Tshwane, the mechanisms have been poorly utilized mostly due to lack of infrastructural development and technical skills.

Findings from this study are not surprising. The results are expected from a typical Sub-Saharan African country in which poverty, unemployment, massive immigration into urban centres prevail. Environmental hazards arising from the decomposition of solid waste under oversaturated conditions [45] and dumping of solid waste in illegal landfills often causes sludge [38]. Such problems are particularly evident in suburbs of Tshwane such as Mamelodi and Marabastad. In this regard, the City of Tshwane can be viewed as a combination of clean white suburbs and dirty black townships. Generally, awareness and regard for environmental sanitation is poor in black suburbs. The other key environmental hazard is caused by arbitrary landfill sites that dot the peripheries of the City of Tshwane. Green waste from landfills produces potentially harmful gasses such as methane and leachates. Such products pollute water reservoirs in the city. The study by Snyman and Vorster [18] has found that composting and the pre-treatment of municipal waste before landfilling are viable options for the City of Tshwane. Silva, Dezotti & Sant'Anna [47] as well as Wiszniowski, Surmacz-Górska, Robert & Weber have found that composting and pre-treatment of municipal waste before landfilling significantly reduces the volume of solid waste and contributes for overall environmental sanitation [48]. At the moment, the City of Tshwane does not have adequate capacity for large scale composting, and there is an acute need for addressing this shortcoming.

The study has shown that a combination of technical and administrative solutions is required in order to improve efficiency in the management of solid waste in the City of Tshwane. To separate waste generated at the various businesses, it is necessary to provide businesses with custom-made containers that are suitable. It is equally important to enforce municipal bylaws in order to ensure compliance. The frequency of collecting waste should be balanced with the volume of waste generated by the various businesses. Studies conducted in various parts of the world by the United Nations Environmental Programme [41] have shown that there are economic benefits in outsourcing the collection and disposal of recyclable waste to the informal sector, and that sanitary landfills should be used for the final disposal of solid waste. In addition to enforcing the law with vigour, it is equally important to provide community based health education on environmental sanitation by collaborating with the Department of Health. Awareness campaigns and socioeconomic incentives could be provided by civic society and non-governmental organizations that have a vested interest in improving environmental sanitation and cleanliness. Since most of the waste generated in the City of Tshwane is organic, it is recyclable. As such, the provision of incentives and education at the grass-roots level carries a clear socioeconomic merit. Composting is a form of aerobic treatment, and is suitable for treating organic waste in the City of Tshwane. According to Barlaz [38], facilities used for storage and collection of waste must be compatible with each other. Waste disposal and processing sites must be located strategically so that the cost of waste collection, disposal and processing becomes optimal. The City of Tshwane needs to make the necessary initial investment available in order to benefit from composting in the long-run.

Extensive waste management research conducted in various parts of China [39] has shown that educating rural as well as urban people on how to produce compost by using low technology has long-term economic benefits to big metropolitan municipalities such as Tshwane. Large scale compost activities require massive infrastructural investment and skills based training. Research conducted in Nigeria [40] has shown that strategic partnerships and collaboration among academic and research institutions and municipalities have the potential for enhancing overall efficiency in waste management, skills development and the creation of employment opportunities in municipalities such as Tshwane. One particular area of waste that stands to benefit out of such partnership is the management and processing of plastic and e-waste. This is because unprocessed plastic waste has almost no economic benefit. The collection and recycling of plastic waste is characterized by serious challenges and difficulties in the City of Tshwane. The City of Tshwane has no coherent policy on the collection of e-waste. Neither does it provide clear incentives to entrepreneurs who wish to collect, classify and process e and plastic waste. Since e-waste could be hazardous, there is a dire need to build capacity in the classification of e-waste into one of two categories (harmful or hazardous), and processing each category of waste by utilizing an appropriate form of technology. There is an acute need for providing incentives, enforcing municipal bylaws, the provision of health and sanitary education, and a comprehensive monitoring and evaluation programme for assessing the progress made in this regard regularly. A well-functioning integrated solid waste management system can only be realized in the City of Tshwane by providing clear incentives for good practice and behaviour, and by severely penalizing irresponsible behaviour in the city. Liua, Shia, Qianc, Hud and Penge [35] have found that the provision of direct socioeconomic incentives, clear guidelines on the collection, disposal and processing of e and plastic waste, as well as a strict enforcement of municipal bylaws is required for improving overall efficiency in the management of e and plastic waste in the City of Tshwane.

The efficient management of solid waste produced by enterprises that conduct business in the various parts of the City of Tshwane has numerous economic, sanitary and health-related

benefits to the inhabitants of the city. Disposing of waste in landfills is much better than using open dumps. Up until recently, emphasis has been placed on waste disposal, and not on management, recycling and composting. Poor management of waste has an adverse impact on the environment and public health, particularly in townships such as Mamelodi, Marabastad, Soshanguve and Attridgeville. In these townships, waste is managed poorly, and landfills are inappropriately sited, designed, managed and operated. Until recently, the management of waste generated by businesses operating in the city has not been given due consideration. The waste management that took place focused mainly on waste disposal and was reactive in that it addressed needs as they occurred. Holistic, integrated waste management planning was poorly done. The low priority that was historically accorded to waste management has resulted in waste impacting detrimentally on the South African environment and on human health. Standards for medical waste incinerators are generally inadequate in comparison with international best practice.

Efficient waste disposal is a process that requires the full collaboration of all stakeholders on a community based collaborative approach. In addition to providing sanitary education and inspection services to the businesses, clear incentives must be provided to ensure maximum success. The enforcement of regulations, the provision of incentives, adequate logistical resources, additional manpower, financial rewards, public-private partnerships and awareness campaigns are all essential.

The treatment of waste produced by the businesses in the City of Tshwane is similar to waste produced in a typical developing nation in the sense that treatment of this waste involves simply a reduction of its volume by use of methods such as baling or shredding although incineration and composting is practiced at a small scale. The emphasis remains on disposal of general waste by landfill without treatment as the lowest cost disposal option, as landfill airspace is still available in South Africa. The lack of pre-treatment of general waste before disposal is therefore currently not regarded as a problem in South Africa. Incineration of general waste and hazardous waste is not acceptable to many stakeholders due to the poor operation of many existing facilities and non-compliance with existing by-laws. Incineration is not economically feasible in South Africa since its warm climate limits the market for the energy derived from the incineration process. The majority of operating incinerators in South Africa are used for the treatment of infectious medical waste [30].

Increasing general awareness about the benefits of proper waste disposal is a key requirement for success. The number of waste disposal sites is limited, and the disposal of waste is expensive. Since there are not enough of these facilities, hazardous waste is often transported over long distances, resulting in increased risks of accidents and higher transport costs. Some other helpful steps are to undertake an integrated plan in which waste is gathered and disposed of efficiently based on mutual collaboration among stakeholders, Strengthen the technical, financial, administrative and operating capacity of the institutions in the basic environmental sanitation sector, encouraging health education and community promotion activities, which are basic to the success of waste collection and disposal, especially at taxi ranks and the streets at the central business district of Pretoria, to provide clear incentives to businesses that improve the quality of waste collection and disposal based on generally accepted standards. Technical cooperation among stakeholders must be directed toward the strengthening of institutions in the basic environmental sanitation sector and emphasis should be given to the following activities: operation and maintenance, community promotion, training, administration and management, the preparation of plans and studies helpful for efficient waste disposal, and the application of technologies that are helpful for efficient waste disposal.

The need for inspection becomes acute during rainy seasons and prolonged civil actions. Indepth interviews conducted with some of the managers of the 1,034 businesses that took part in the study have revealed that the businesses suffer enormously during prolonged strike actions. Waste material gets vandalized by scavengers as a result of delay in collection by service providers. It is too risky to leave waste uncollected during rainy seasons as waste could easily be mixed up with excreta that could be washed away by rain-water, ending up in wells and streams. The germs in the excreta could then easily contaminate drinking or washing water. In such situations, diarrhoeal diseases can spread from one person to another. Failure to dispose of waste can have a significant effect on the health of communities. Where refuse is not disposed of properly, it can lead to pollution of surface water, as rain washes refuse into rivers and streams. There may also be a significant risk of groundwater contamination. Refuse disposed of in storm drains may cause blockages and encourage fly and mosquito breeding. It is therefore very important that household waste is disposed of properly. All business premises operating in the City of Tshwane must be inspected for environmental sanitation and cleanliness regularly with a view to encourage and reward good practice, and to penalize irresponsible behaviour. Municipal bylaws on the collection, disposal and management of waste must be enforced with enough vigour and commitment. Failure to do so can easily result in frustration among businesses that obey municipal guidelines and regulations on waste management.

CONCLUSIONS AND RECOMMENDATIONS

The study showed that 17% of the 1, 034 businesses were not efficient enough with regards to the proper collection, disposal and management of solid waste. The study has shown that efficiency in the management of solid waste is adversely affected by lack of adherence to municipal bylaws and regulations on proper waste management, wrong perception on the potential benefits of proper waste disposal, failure to provide customers with enough trash cans at business premises, and the operation of businesses by employed managers, in a decreasing order of importance. Lack of adherence to municipal bylaws and regulations that are essential for proper waste management constitutes a key challenge in the City of Tshwane. The presence of wrong perception on the potential benefits of waste disposal is also a well known hurdle. To rectify this issue, a combination of three interventions is necessary. The first intervention is to enforce municipal bylaws with vigour. The second intervention is to provide incentives to businesses that manage solid waste properly in accordance with guidelines provided by the City of Tshwane. Regulatory and legislative actions must be taken against those who fail to respect municipal bylaws that are related to cleanliness and proper waste management. The efficient disposal of waste generated by businesses operating in the city has direct economic benefits to all inhabitants of the city. Accordingly, waste should be gathered efficiently, and disposed of in accordance with the waste collection and management plan produced by the City of Tshwane. Management of waste must start at the lowest level. The third intervention is to actively promote an education campaign in all parts of the City of Tshwane with a view to ensure the full collaboration of businesses conducting business in the City.

Based on findings of this particular study, the following recommendations are made to the City of Tshwane in order to improve overall efficiency in the management of solid waste that is generated by businesses operating in the city:

- The City of Tshwane must produce and implement an integrated plan for the management of solid waste in collaboration and partnership with the relevant stakeholders in the city so that each of the role players in the waste management chain can investment adequately in basic environmental sanitation.
- An initial infrastructural investment needs to be made by the City of Tshwane in order • to build adequate capacity for commercial composting. This should be done in collaboration with business enterprises so that they can share the financial burden at the initial stage, and benefit from compost-related business opportunities in the longrun.
- The City of Tshwane must strive to increase awareness about the potential benefits of • proper waste collection and disposal by promoting health education on environmental sanitation and techniques that are useful for collecting and sorting waste. Incentives must be provided to businesses that do a good job in terms of the proper collection and disposal of solid waste. The City must support community-based health promotion activities undertaken by non-governmental organizations. The City must also support research initiatives conducted by academic and research institutions in areas that are related to waste management, environmental sanitation, and personal hygiene by funding them partially or fully.
- The City of Tshwane must improve the conditions of employment of municipal workers responsible for waste collection and disposal.
- The City of Tshwane and Gauteng Department of Health must provide technical • assistance to businesses that do not have their own waste management plans so that such businesses can contribute for overall efficiency in environmental sanitation.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the various businesses that willingly took part in the study, the Health Department of the City of Tshwane for providing technical and administrative assistance during planning and data collection, and Statistics South Africa for providing the authors with the sampling frame and GIS map of business enterprises operating in the City of Tshwane.

REFERENCES

- [1] Statistics South Africa (SSA), Census 2011 report, http://www.statssa.gov.za/census2011/default.asp
- [2] Statistics South Africa (SSA), Income and expenditure survey 2010/2011, 2012, http://www.statssa.gov.za/ies/welcome.asp.
- [3] City of Tshwane Metropolitan Municipality (CTMM), State of the environment report on Pretoria, 2012, http://www.ceroi.net/reports/pretoria/issues/qual_env/state.htm.
- [4] City of Tshwane Metropolitan Municipality (CTMM), Municipal information and services, 2012, http://www.tshwane.gov.za/munservices.cfm.
- [5] South African National Department of Environmental Affairs and Tourism (SANDEAT), National policy on waste management, 2012, http://www.sciencedirect.com/Science.
- [6] L. O. Mbeng, P. S. Phillips, and R. Fairweather, "Developing sustainable waste management practice: application of Q methodology to construct new strategy component in Limbe-Cameroon," The Open Waste Management Journal, vol. 2, no. 1, pp. 27-36, 2009.
- [7] D. C. Wilson, and A. Scheinberg, "What is good practice in solid waste management? "Waste Management & Research, vol. 28, no. 12, pp. 1055-1056, 2010.

- [8] M. Grosso, A. Motta, and L. Rigamonti, "Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive," Waste Management, vol. 30, no. 1, pp. 1238-1243, 2010.
- [9] S. T. Wagland, F. Veltre, and P. J. Longhurst, "Development of an image-based analysis method to determine the physical composition of a mixed waste material, " Waste Management, vol. 32, no. 2, pp. 245-248, 2012.
- [10] G. J. Oh, "International comparative study of 3R and waste management policy developments," Material Cycles and Waste Management, vol. 13, no. 1, pp. 86-102, 2011.
- [11] M. Read, M. K. Gregory, and P. S. Phillips, "Driving the waste prevention agenda an evaluation of weighing kerbside household waste arisings methodology," Solid waste technology and management, vol. 34, no. 3, pp. 161-174, 2008.
- [12] N. Matsueda, and Y. Nagase, "Economic instruments and resource use in a recyclable product market," *Economics Bulletin*, vol. 17, no. 21, pp. 1-10, 2011.
- [13] A. Bernstad, J. Jansen, and H. Aspegren, "Local strategies for efficient management of solid household waste - the full-scale Augustenborg experiment", Waste Management & Research, vol. 30, no. 2, pp. 200-212, 2012.
- [14] S.I. Sakai, H. Yoshida, Y. Hirai, M. Asari, H. Takigami, S. Takahashi, K. Tomoda, M. V. Peeler, J. Wejchert, T. Schmid-Unterseh, A. R. Douvan, R. Hathaway, L. D. Hylander, C. Fischer, and A. Idris, B. Inanc, and M. N. Hassan, "Overview of waste disposal and landfills/dumps in Asian countries," Material Cycles and Waste Management, vol. 6, no. 1, pp. 104–110, 2004.
- [15] E. Dijkgraaf, and R. H. J. M. Gradus, "Cost savings in unit-based pricing of household waste: The case of The Netherlands," Resource and Energy Economics, vol. 26(4), pp. 353-371, 2004.
- [16] D. Laner, and H. Rechberger, "Quantitative evaluation of waste prevention on the level of small and medium sized enterprises (SMEs), "Waste Management, vol. 29, pp. 606–613, 2009.
- [17] C. Berglund, "The assessment of households' recycling costs: the role of personal motives," Ecological Economics, vol. 56, pp. 560-569, 2005.
- [18] J. Snyman, and K. Vorster, "Sustainability of composting as an alternative waste management option for developing countries: a case study of the City of Tshwane," Waste Management & Research, vol. 29, pp. 1222-1231, 2011.
- [19] A. J. Caplan, T. C. Grijalva, and P. M. Jakus, Paul M., "Waste not or want not? A contingent ranking analysis of curbside waste disposal options," Ecological Economics, vol. 43(2-3), pp. 185-197, 2002.
- [20] P. Suman, E. Thys, A. Mfoukou-Ntsakala, L. Ali, M. Ouedraogo, P. Van den Bossche, G. Van Huylenbroeck, D. Berkvens, and N. Speybroeck, "Methodology for assessing determinants of manure use in urban areas of Africa, "Waste Management & Research, vol. 28, no. 12, pp. 1076-1086, 2010.
- [21] A. Scheinberg, D. C. Wilson, and L. Rodic, Solid Waste Management in the World's Cities: Third edition in UN-Habitat's State of Water and Sanitation in the World's Cities Series, Earthscan for UN-Habitat, New York, 2010.
- [22] P. Vicente, and E. Reis, "Factors influencing households' participation in recycling, "Waste Management & Research, vol. 26, pp. 140–146, 2008.
- [23] M. Bates, L. O. Mbeng, and P. S. Phillips, "Managing e-waste— a reuse strategy for UK computers to facilitate developments in third sector organization composting in Cameroon", Solid waste technology and management, vol. 34, no. 4, pp. 204-212, 2008.
- [24] United States Environmental Protection Agency (USEPA). Municipal solid waste in

the United States: 2005 facts and figures, executive summary, United States Environmental Protection Agency, Office of Solid Waste, Washington, DC, 2006.

- [25] O. Hage, P. Söderholm, and C. Berglund, "Norms and economic motivation in household recycling: empirical evidence from Sweden," Resources, Conservation and *Recycling*, vol. 53, pp. 155–165, 2009.
- [26] A. Bernstad, J. Jansen, and H. Aspegren, "Property-close source-separation of hazardous waste and waste electrical and electronic equipment – a Swedish case study," Waste Management, vol. 31, pp. 536-543, 2010.
- [27] M. Qotole, M. Xali, and F. Barchiesi, The Commercialisation of Waste Management in South Africa, 2011, http://www.municipalservicesproject.org/sites/municipalservicesproject.org/
- [28] Palmer Development Group (PDG). Evaluation of Solid Waste Practice in Developing Urban Areas of South Africa, 2012, Water Research Commission: Pretoria.
- [29] G. Tchobanoglous, H. Theisen, and S. A. Vigil. Integrated solid waste management Engineering Principles and Management Issues, McGraw Hill, New York, 1993.
- [30] LEAP. Utilization of reproductive health services among women 15 to 49 years of age at the City of Tshwane Metropolitan Municipality: A research report prepared for the City of Tshwane Metropolitan Municipality, 2011.
- [31] R. Heeks, "Information systems and developing countries: failure, success and local Improvisations," The Information Society, vol. 18, no. 1, pp. 101-112, 2002.
- [32] Gauteng Johannesburg Metropolitan Council (GJMC), Budget guide for residents, 2013, http://www.joburg.org.za/
- [33] G. Federico, G. Rizzo, and M. Traverso, "Strategic environmental assessment of an integrated provincial waste system," Journal of Waste Management Research, vol. 27, no. 1, pp. 390-398, 2009.
- [34] South African Department of Environmental Affairs and Tourism (DEAT), National Policy on Waste Management: Report by the Department of Environmental Affairs and Tourism, 2011, http://www.sciencedirect.com/Science.
- [35] X. Liua, J. Shia, X. Qianc, Y. Hud, and G. Penge, "One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulicgaseous effect and concise calculation, "Waste Management, vol. 31, no. 12, pp. 2473-2483, 2011.
- [36] South African Department of Environmental Affairs and Tourism (DEAT), Draft White Paper on Environmental Management Policy for South Africa: National Policy on Waste Management. Report by the Department of Environmental Affairs and Tourism, 2012, http://www.sciencedirect.com/Science.
- [37] X. Liu, J. Shi, X. Qian, Y. Hu, and G. Peng, "One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation, "Waste Management, vol. 31, no. 12, pp: 2473-2483, 2011.
- [38] M. A. Barlaz, "Forest products decomposition in municipal solid waste landfills," Waste Management, vol. 26, pp. 321-322, 2006.
- [39] Y. Chen, Y. Xie, and L. Zhan, "One-dimensional consolidation model for landfills considering solid-liquid-gas interaction, "Chinese Journal of Geotechnical Engineering, vol. 28, no. 2, pp. 184–190, 2011.
- [40] T. Nzeadibe, and C. Ajero, "Development impact of advocacy initiatives in solid waste management in Nigeria, "Environment, Development and Sustainability, vol. 13, pp. 163-177, 2012.

- [41] United Nations Environmental Programme (UNEP), Agenda 21: Environment and Development Agenda, 1992, http://www.unep.
- [42] United Nations Development Programme (UNDP), National human development report, Chapter 6: Environmentally sustainable development. United Nations Development Programme: New York, 2003.
- [43] World Health Organization (WHO), Primary Heath Care, 2007, http://www.who.int/topics/Primary Health Care
- [44] Statistics South Africa (SSA), Results of the 2007 Community Survey, 2007, http://www.statssa.gov.za/
- [45] Y. J. Hao, W. X. Wu, S. W. Wu, H. Sun, and Y. X. Chen, "Municipal solid waste decomposition under oversaturated condition in comparison with leachate recirculation, "Process Biochemistry, vol. 43, pp. 108-112, 2008.
- [46] B. Mertoglu, B. Calli, and B. Inanc, "Evaluation of in situ ammonia removal in an aerated landfill bioreactor, "Process Biochemistry, vol. 41, pp. 2359-2366, 2006.
- [47] A.C. Silva, M. Dezotti, and G. L. Sant'Anna Jr, "Treatment and detoxification of a sanitary landfill leachate, "Chemosphere, vol. 55, pp. 207-214, 2004.
- [48] J. Wiszniowski, J. Surmacz-Górska, D. Robert, and J. V. Weber, "The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive, "Journal of Environmental Management, vol. 85, pp. 59-68, 2007.
- [49] United States Environmental Protection Agency (EPA), Municipal Solid Waste in the United States: Facts and Figures, 2013, http://www.epa.gov/msw/facts.htm.
- [50] W. L. Kuhre, ISO 14031- Environmental Performance Evaluation (EPE): Practical Tools for Conducting an Environmental Performance Evaluation, Prentice Hall, Upper Saddle River, New Jersey, 1998.
- [51] M. P. Sierra-Vargas, A. M. Guzman-Grenfell, S. Blanco-Jimenez, J. D. Sepulveda-Sanchez, R. M. Bernabe-Cabanillas, B. Cardenas-Gonzalez, G. Ceballos, and J. J. Hicks, "Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach, "Journal of Occupational Medicine and Toxicology, vol. 4, no. 1, pp. 1-17, 2009.
- [52] M. Swilling, and D. Hutt. Urban Waste and Governance in Africa, IDRC, Ottawa, 1999.
- [53] A. M. Khan, "Solid waste disposal with intermediate transfer stations: an application of the fixed-charge location problem, "Journal of the Operational Research Society, vol. 38, no. 1, pp. 31–37, 2009.
- [54] S. Mangkoedihardjo, A. P. Pamungkas, A. F. Ramadhan, A. Y. Saputro, D. W. Putri, I. Khirom, and M. Soleh, "Priority improvement of solid waste management practice in Java, "Journal of Applied Sciences in Environmental Sanitation, vol. 2, no. 1, pp. 29-34, 2007.
- [55] S. B. Nimbalkar, P. H. Sawant, and R. A. Hegde, "Ecological sanitation system for village Vidgaon, India, "Journal of Applied Sciences in Environmental Sanitation, vol. 4, no. 1, pp. 1-5, 2009.
- [56] P. H. Rao, "Hospital waste management system: a case study of a south Indian city, "Journal of Waste Management Research, vol. 27, no. 1, pp. 313-321, 2009.
- [57] H. Özkaynaka, T. Palmab, J. S. Toumac, and J. Thurmanb, "Modelling population exposures to outdoor sources of hazardous air pollutants, "Journal of Exposure Science and Environmental Epidemiology, vol. 18, no. 1, pp. 45-58, 2008.
- [58] L. H. Roht, S. W. Vernon, F. W. Weir, S. M. Pier, P. Sullivan, and L. J. Reed, "Community exposure to hazardous waste disposal sites: Assessing reporting bias, "American Journal of Epidemiology, vol. 122, no. 3, pp. 418-433, 2005.

- [59] South African Government, "The Constitution of the Republic of South Africa: Act 108 of 1996". Pretoria: The South African Government, 1996.
- [60] L. Godfrey, Facilitating the improved management of waste in South Africa through a national waste information system, 2013, <u>http://www.sciencedirect.com/science.</u>
- [61] B. K. Dawson, and R. G. Trapp. Basic Clinical Biostatistics, 2nd ed, McGraw-Hill, New York, 2004.
- [62] D. W. Hosmer, and S. Lemeshow. Applied Logistic Regression, 2nd ed, John Wiley & Sons, New York, 2000.
- [63] A. H. Leyland, and H. Goldstein. Multilevel Modelling of Health Statistics. John Wiley & Sons, Chichester, 2011.
- [64] Canadian Standards Association, ISO/TC207/SC4/JWG. ISO 14031: 1999(E) Environmental Performance Evaluation – Guidelines, Canadian Standards Association, Toronto, Canada, 1999.
- [65] Canadian Standards Association, ISO/TC207/SC4/JWG. ISO/TR 14032: 1999 -Examples of Environmental Performance Evaluation (EPE), Canadian Standards Association, Toronto, Canada, 1999.