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ABSTRACT 

 

When the receiver does not have knowledge of the transmitted signal, it must make use of the 

blind channel estimation techniques to reveal the source signal. A subclass of the techniques 

is called decision directed least mean square equalization. This technique utilizes the detected 

signal to reconstruct the transmitted signal and uses this signal in place of the original signal. 

The decision directed LMS equalizer uses the sign operator in decision making. The three 

types of sign operators which are; sign error LMS algorithm, sign data LMS algorithm and 

sign.sign LMS algorithms are investigated and their performance noted. 

 

INTRODUCTION 

 

For over twenty years, research has centered on developing new algorithms and formulating a 

theoretical justification for these algorithms. Blind channel equalization is also known as self-

recovery equalization. The essence of blind equalization is to recover the unknown input 

sequence to the unknown channel based solely on the probabilistic and the statistical 

properties of the input sequence. The receiver can synchronize to the received signal and 

adjust the equalizer without the training sequence. The term blind is used in this argument 

because it performs the equalization on the data without reference signal. Instead the blind 

equalizer relies on knowledge of the signal structure and its statistics to perform the 

equalization.  

 

(i) Blind signal is the unknown signal which would be identified in output signal with 

accommodated noise at the receiver. 

(ii) Channel equalization uses the idea and knowledge of the training sequences for 

channel estimation whereas blind channel equalization does not utilize the 

characteristics of the training sequences for frequency and impulse response 

analysis of channel. 

(iii) Blind channel equalization differs from channel equalization and without knowing 

the channel characteristics like transfer function and SNR it efficiently estimates 

the channel and reduces ISI by blind signal separation at receiver side by 

suppressing noise in the received signal. 

 

The algorithms whose operations are based on the principle of blind equalization are the 

Decision Directed Equalization algorithm and the Dispersion Minimization Algorithm but 

only decision directed equalization is treated below. For the decision directed equalizer, the 

decision device at the output y{k} is a simple threshold device which can be represented as a 

sign operator that computes the source recovery as sign{y(k)}. The sign of y(k) gives the 

delayed source signal that is equivalent to S(k – δ). This work treats three types of sign 

operators. They are the sign data LMS algorithm, sign error LMS algorithm and sign.sign 

LMS algorithm (i.e., sign{e(k)}.Sign{x(k)}).The next section of this paper develops an 

algorithm for blind equalization and section III presents an algorithm for optimizing tap 
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coefficients using gradient descent method. Section IV treats the signed LMS algorithm while 

V treats the sign.sign LMS algorithm. Section VI presents some simulation results for the 

three types of sign operators. 

 

DECISION DIRECTED LMS ALGORITHM FOR BLIND EQUALIZATION 

 
 

Assume that a data sequence is transmitted through a linear channel with unknown impulse 

response S. The data may take on one of a small number of discrete values (e.g., ± a). The 

output of the unknown channel, xt , is passed through a linear transversal filter W whose 

impulse response is approximately the delayed source sequence S
-1 . 

The purpose of applying 

the equalizer W is to council out most of the distorting effects of the channel S so that the 

output sequence yt is a new copy of the original transmitted sequence ât. The zero order 

memory less nonlinear decision process (ZNL) of fig (1) investigates each output yt and 

replaces it with the closest value from the set of discrete input values producing the estimated 

sequence (ât). As a result of the delay introduced into the system by the equalizer W, the 

desired output generated by yt when passed through the ZNL is given by the estimate of  ât = 

at – N where N is the unknown delay introduced by equalizer W [Steven J.  Nowlan et al]. 

 

The system is frequently applied in digital communications where data must be converted 

into analog form for transmission before converting back into digital form at the receiver. 

The equalizer W is generally a filter with adjustable tap weights. The envisaged problem is 

how to adjust these tap weights so that the equalizer produces a good approximation of the 

source sequence S
-1

 . If the sequence (at )is known, the classical approach is to use an LMS or 

stochastic gradient descent procedure to minimize  E[(yt - at – N)
2
]. The usual practice is to 

assume stationarity of systems and processes and to substitute time averages for ensemble 

averages. But this expectation is technically evaluated with respect to ensemble averages of 

the signal. In this argument, one may assume that all expectations are evaluated as time rather 

than ensemble averages. In practical situations the sequence (at) is not known. Instead, a two-

step procedure is used to adjust the equalizer; (i) an initial settling phase in which the 

transmitter sends a known initialization sequence and the receiver performs LMS adjustment 

of the equalizer and (ii) a phase in which the receiver uses the output of the ZNL (ât) as an 

estimate for  (at) in performing LMS adjustment of the equalizer. It is this second step of the 

procedure that is called the decision-directed mode of equalization since the updates to the 

tap weights of the equalizer are controlled by the decisions made by the zero-order memory 

less nonlinear system.  

 

In the classical decision directed LMS algorithm, the ZNL is a simple threshold device. For 

the binary channel we are considering, the output of the ZNL can be represented as a sign(yt) 

and the decision directed LMS algorithm can be regarded as minimizing E[(yt – a sign(yt)
2
]. 

Fig 1: Decision directed LMS 
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In this paper, we discuss the different forms for operating LMS equalizer in decision-directed 

mode. 

 

DEVELOPING ALGORITHM FOR OPTIMIZING TAP COEFFICIENTS 

 

The adaptive filter works on the principle minimizing the mean square error between the 

filter output and target signal [Ude Anthony O., 2010]. Adaptive filters are used for 

estimation of non-stationary signals and systems or in application where a sample by sample 

adaptation of a process and/or low processing delay is required. 

 

Least mean square (LMS), Recursive Least Square (RLS), and Steepest Descent Algorithms 

are based on finite impulse response (FIR) adaptive filtering where the filter coefficient 

corresponds to the weight vector of impinging signals on each array. The least mean squares 

(LMS) algorithms adjust the filter coefficients to minimize the cost function. Compared to 

recursive least squares (RLS) algorithms, the LMS algorithms do not involve any matrix 

operations. Therefore, the LMS algorithms require fewer computational resources and 

memory than the RLS algorithms. The implementation of the LMS algorithms also is less 

complicated than the RLS algorithms. However, the eigenvalue spread of the input 

correlation matrix, or the correlation matrix of the input signal, might affect the convergence 

speed of the resulting adaptive filter. 

 

By adaptively varying the filter coefficients, the weight vectors are varied according to the 

changing channel condition and position of the mobile user (MS) [Debashre Mohapatra et al]. 

 

 
 

The adaptive digital filter equations are summarized by [Proakis John G. et al, 2004]: 

Output equation 𝑦[𝑘] = 𝑓[𝑘]. 𝑋[𝑘] … … … … … … … … … …(1) 

Where  𝑓[𝑘] is the filter coefficient or weight vector, while 𝑋[𝑛] is the input signal vector. 

Input X[k] Z-1 Z-1 Z-1 X[k-1] X[k-2] X[k-k+1] 

f0 f1 f2 fn-1 

e[k] 

y[k ] or 𝑦𝑘 
- 

+ Desired signal -

d[k] or 𝑑𝑘 
Adaptation 

Algorithm(𝜇 ) 

Detector 

Figure 2:  Block Diagram of Simple Adaptive Filter 

∑ 

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#categorize
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_rls_algorithms/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_choose_algorithm/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#eigenvalue
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_monitor_behave/#convergence
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_monitor_behave/#convergence
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Error signal; 𝑒[𝑘] = 𝑑[𝑘] −  𝑦[𝑘] = 𝑑[𝑘] − 𝑓[𝑘]. 𝑋[𝑘] … … … … … … … … . (2) 

Where  𝑑[𝑘] is the desired or reference signal. 

 

Adaptive channel equalization is required for channels whose characteristics change with 

time. In this situation, the intersymbol interference (ISI) varies with time. Therefore the 

channel equalizer must track such time variations in the channel response and adapt its 

coefficients to reduce the intersymbol interference (ISI). In the context of this work, the 

optimum coefficient vector fopt varies with time due to time variation in the matrix B 

[Proakis] and for the case of mean square error (MSE) criterion, time variations in the vector 

d as expressed in the set of linear equations in the general matrix form. Under this condition 

the iterative method described by the coefficient vector 

𝑓𝑘+1 =   𝑓𝑘 −  𝜇𝑔𝑘 ………………………………..(3) 

can be modified to use the estimates of the gradient components. Thus the algorithm for 

adjusting the equalizer tap coefficients may be expressed as 

𝑓𝑘+1̂ = 𝑓�̂�  −  𝜇𝑔�̂� ……………………………..(4) 

Where 𝑔�̂� denotes an estimate of the gradient vector 𝑔𝑘 and 𝑓�̂� denotes the estimate of the tap 

coefficient vector. In the case of the mean square error criterion, the gradient vector 𝑔𝑘 can be 

expressed as 

𝑔𝑘 =  −𝐸(𝑒𝑘𝑦𝑘
∗) …………………………………………………………………..(5) 

An estimate 𝑔�̂� of the gradient vector at the 𝑘𝑡ℎ iteration is computed as 

𝑔�̂�  =  −(𝑒𝑘𝑦𝑘
∗)  ……………………………………………………………….(6) 

Where  𝑒𝑘 denotes the difference between the desired output from the equalizer at the 𝑘𝑡ℎ 

time instant and the actual output  𝒚(𝑘𝑇) and 𝑦𝑘 denotes the column vector of 2k +1 received 

signal values contained in the equalizer at time instant k. The error signal is expressed as ; 

𝑒𝑘 =  𝑑𝑘  −   𝑦𝑘 ……………………………………………………………(7) 

Where  𝑦𝑘 = 𝑦(𝑘𝑇) is the equalizer output and 𝑑𝑘 is the desired symbol. Hence by 

substituting (6) into (4), we obtain the adaptive algorithm for optimizing the tap coefficients 

(based on the MSE criterion) as 

𝑓𝑘+1̂  =   𝑓�̂�  +   𝜇𝑒𝑘𝑦𝑘
∗  ………………………………………………………………(8) 

Since the estimate of the gradient vector is used in (8), the algorithm is called the stochastic 

gradient algorithm. It is also known as the Least Mean Square (LMS) algorithm. 

This adaptive equalizer based on the LMS algorithm can be implemented using MatLab. If 

the channel number of taps are selected for the equalizer as 2k+1=11, and the received signal 

plus noise power PR is normalized to unity[Saeed V., 2006], the channel characteristic is 

given by the vector x as 

x = [0.05 -0.063 0.088 -0.126 -0.25 0.9047 0.25 0 0.126 0.038 0.088]. 

 

In summary, the LMS algorithms adjust the filter coefficients to minimize the cost function. 

The LMS algorithms require fewer computational resources and memory. The 

implementation of the LMS algorithm is less complicated. The standard LMS algorithm 

performs the following operations to update the coefficients of the adaptive filter; 

 

 Calculates the output signal y(k) from the adaptive filter as described in 

eqn(1). 

 Calculates the error signal e(k) by using equation (2). 

 Updates the coefficients by application of eqn(8). 
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SIGN LEAST MEAN SQUARE ALGORITHM 

 

Some adaptive equalizer applications require implementing adaptive filter algorithms on 

hardware targets, such as digital signal processing (DSP) devices, FPGA targets and 

application specific integrated circuits (ASICs). In that respect, the targets require a 

simplified version of the standard LMS algorithm. The sign function as defined by the 

following equation, can simplify the standard LMS algorithm. 

𝑆𝑖𝑔𝑛(𝑦) =

 {

1,              𝑦 > 0
0 ,             𝑦 = 0

−1,             𝑦 < 0
……………………………………………………………………………(9) 

Applying the sign function to the standard LMS algorithm returns the following three types 

of sign LMS algorithms. 

• Sign-error LMS algorithm; - it applies the sign function to 

the error signal e(k). This algorithm updates the coefficients of an adaptive filter using 

the following equation; 

 𝑓𝑘+1 = 𝑓𝑘  +
  𝜇𝑠𝑖𝑔𝑛(𝑒(𝑘))𝑥(𝑘)……………………………………………………….(10) 

• Sign-data LMS algorithm;- it applies the sign function to 

the input signal vector 𝑥(𝑘). This algorithm updates the coefficients of an adaptive 

filter using the following equation, 

 𝑓𝑘+1 = 𝑓𝑘 +
𝜇. 𝑒(𝑘). 𝑠𝑖𝑔𝑛(𝑥(𝑘))…………………………………………………………….(11) 

• Sign-Sign LMS algorithm;- this applies the sign function 

on both e(k) and 𝑥(𝑘). This algorithm updates the coefficients of an adaptive 

equalizer using the following equation; 

𝑓𝑘+1 =  𝑓𝑘 +
 𝜇. 𝑠𝑖𝑔𝑛(𝑒(𝑘)). 𝑠𝑖𝑔𝑛(𝑥(𝑘))…………………………………………………(12) 

 

The sign LMS algorithms involves fewer computation operations than other algorithms. 

When the step-size 𝜇 equals a power of 2, the sign LMS algorithm can replace the 

multiplication operations with shift operations. Compared to the standard LMS algorithm, the 

sign LMS algorithm has a slower convergence speed and a greater steady state error. The 

sign-error LMS algorithm is used in this research and is applied at the decision directed LMS 

algorithm determination in section (II). 

 

SIGN-SIGN LEAST MEAN SQUARE ALGORITHM 
 

The equalizer coefficients are computed using the sign-sign least mean square (SS-LMS) 

method because it demonstrates the simplicity and robustness needed for realization in very 

high speed circuits (Gurpreet Kaur, Gurmeet Kuar). The flow chart for sign-sign least mean 

square algorithm shown in fig(3) is summarized as follows: 

 

Step (i) – Initialize the  filter weight for minimum mean square error. 

Step (ii) – After that the  i number of delayed versions of received signal using 100ps time 

delay was multiplied with these weights and got the actual output which was the summation 

of all these terms.  

Step (iii) – The error signal was calculated as given in the following equation𝑒(𝑘) = 𝑑(𝑘) −
𝑦(𝑘) … … … … … … … … … … … … ….(13) 
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where  k  number of inputs, d(k) is desired output signal, y(k) is the actual output signal and 

e(k) is the error signal.  

Step (iv) – The filter weight was updated using sign-sign least mean square method as given 

below;𝑓(𝑘) = 𝑓(𝑘 − 1) + 𝑎𝑠𝑖𝑔𝑛(𝑒(𝑘))𝑠𝑖𝑔𝑛(𝑢(𝑘)) … … … … … … … (14)  

where f(k) is the weight update, f(k-1) is the previous weight, u(k) is the actual input signal 

and a is the step-size which controls the convergence rate and stability of the algorithm. The 

value of the a is chosen from0 < 𝛼 <  
2

∑ 𝜆𝑖
𝐾
𝑖=1

… … … … … … … … … … … … … … …………..(15) 

where  𝜆𝑖 is the i
th

 eigenvalue of the covariance matrix 𝑅𝑘𝑘. 
Step (v) – The procedure is repeated until the limit of minimum mean square error was 

achieved. 

 

 
 

 

 

 Fig 3:  Flow chart of Sign-Sign LMS Algorithm 
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SIMULATION RESULTS 

 

A simulation study has been conducted in order to evaluate the performance of the decision 

directed sign LMS operators. All the sign-algorithms are individually simulated using tap 

length of 10 at step-size of 0.0001. The number of iteration given is 5000. The input to the 

equalizer is a sinusoidal sign from a noisy channel. The signal graph is plotted against a time 

index value spanning up to 5000. The adaptive line enhancement is demonstrated using a 32-

coefficient FIR filter to provide good introduction to the sign-sign algorithm. The power 

spectral density in the figure shows the sign-error LMS algorithm as giving an observed and 

enhanced signal with little or no noise ripples and this shows it to be better than the others. 

As it’s PSD span between 0 to -40dB, that of sign-data and sign-sign LMS exceeds -40dB 

from zero value. The deviation of the enhanced signal from the original in both sign-data 

LMS algorithm, sign-sign LMS and the sign-error LMS algorithm is not much. Finally, the 

three have greater steady state error but slower convergence speed than the standard LMS 

algorithm.  

 
Fig 4: Sign Error LMS Algorithm 

 

 
Fig 5: Sign data Algorithm 
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Fig 6:  Sign-Sign LMS 
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