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ABSTRACT 

 

A first order polynomial modulated by a simple exponential function pair potential function 

was modeled and used to calculate the physical properties of body center cubes. The 

parameters of this potential function were calculated using the experimental values for the 

elastic constants, bulk modulus and the lattice constant of the metallic cubes. The equation of 

state and the elastic constants which were computed using this pair potential function agreed 

well with the experimental values for all the selected body center cubes. 

 

INTRODUCTION 

 

In solid metallic materials, the atoms vibrate about a mean position; it is then desirable to 

obtain a functional form of the pair potential function that describes adequately both the 

repulsive and the attractive energies that exist between any paired atoms as a result of this 

existing vibration.  

 

A set of anharmonic pair potential functions were developed to describe the vibrational 

properties of two atoms from different theoretical models and semi empirical models,  ab-

initio [1], tight-binding [2], First principle [3], density function theory[4]. In some cases, a 

simple exponential function has been used, Johnson [5], Cai and Yee [6], equivalent crystal 

theory [7]. These models have been extensively used to calculate the bulk properties of 

metals to a very great success due to the simple procedure involved in fitting the 

experimental data of the selected crystals. If this potential, denoted by )(r ,  duely represents  

the energy of interaction of two atoms,  a distance r  apart, then, the following conditions  

must be satisfied; (1)The force rr  )( must be attractive at large r  and repulsive at small

r ; therefore, )(r have a minimum at some point err  , (2) The magnitude of )(r must 

decrease more rapidly with r  than 3r . (3) All elastic constants are positive. (4) 

,0     1211 CC  where 1211   and  CC  are elastic constants, [8]. 

 

In this study, anharmonic pair potential function of the form of a simple first order 

polynomial modulated by a simple exponential function is proposed. The purpose of this 

study is then to find out if the proposed pair potential function will satisfy the conditions 

above and investigate applicability of this potential in describing the properties of cubic 

metals. 

 

MODEL 

 

A modulated first order polynomial pair potential of the form 
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is proposed in this study.  

 

There are three unknown parameters,   and  ,e  in this model whose values are numerically 

determined by fitting the experimental values of the lattice constant, the elastic constants, 

bulk modulus and equilibrium internal energy of the bcc metals.  

In order to obtain the potential energy, )(rU  , of the whole crystal whose atoms are at rest, it 

is necessary sum equation (1) over the entire crystal. This is most easily done by choosing 

one atom in the lattice as an origin, calculating its interaction with all the others in the crystal, 

and then multiply by 2N . Thus the total energy )(rU  is given by  
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where N is the atomic number. The Equation (3) requires a summation over a number of 

nearest neighbour atoms. 

Here ijr  is the distance from the origin to the thj  atom. It is convenient to define the 

following quantities: 

                      aMalnmreT
N

P jjjjj
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where jjj lnm   ,   ,  are position coordinates of any of the atom in the lattice. Using equation 

(3), the energy Eq. (2) can be written as: 
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 The first and the second derivatives of Eq. (4) with respect to a are; 
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At absolute zero ,0T 0a is value of a  for which the lattice is in equilibrium, then )( 0aU

gives the energy of cohesion,  
0

)(
aa

daadU


is related to the compressibility. Thus  

                                                             )()( 000 aUaU  …………………………………(7) 

where )( 00 aU  is the energy of sublimation at zero at zero pressure and temperature.  

Also                                                 0
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And the compressibility is given by 
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where 0V is volume at absolute temperature and 00k is the compressibility at zero temperature. 

The volume per atom NV / is related to the lattice constant a by  

                                                   3/ caNV  …………………………………………… (10) 

 

Substitute Eq. (10) in Eq. (9), the compressibility is expressed by 

                                      22

0000 )(911 daaUdcNaBk  ………………………….. (11) 
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The values of the parameters in the pair potential function can be obtained from self-

consistent equations (4-11). 

APPLICATIONS TO CALCULATION OF PHYSICAL QUANTITIES 

EQUATION OF STATE 

 

The equation of state can be computed from the energy equation. Here the thermal part of the 

free energy can be adequately represented by Debye model. The Helmholtz free energy 

obtained from this procedure, [12], is given by;   

                        )()1ln(3)( TNkTD
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where k is the Boltzmann’s constant, T is the absolute temperature,  is the Debye 

temperature and        
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The thermodynamic expression for pressure is  

                              
TV

A
P 












 ………………………………… …….……….… (14) 

Therefore the equation of state is given as 

                       )()3()()231( TDVNkTdrrdENcrP  …………..…….… (15) 

where   is the Gruneisen constant and V  is the volume. 

Equation (11) can be expressed as a direct relationship between the applied pressure P  and 

the fractional change in volume VV , by using 3
NcrV   and the relation   .
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where 
00

)
0

( VVVVVx  . 

The state equation (16) contains mainly the parameters, ( e and  ,  ) of the proposed pair 

potential function. 

 

Calculation of the elastic constants 

 

The Universal energy function proposed for all materials has been used to obtain the 

embedded energy function. This energy function is given as  
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where ce EB09 , e is the equilibrium volume,   0B  is the bulk modulus. 

The electron density function is given as 
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Using the embedded atom method equation [9], we have that 
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where   . Equation (18) can be made to closely follow the embedding energy equation 

of Finnis-Sinclair by setting 2/1 . With this the values of   can be obtained for the 

selected bcc metals. 

The values of the elastic constants 441211 C and  , CC for the selected bcc metals are obtained 

using the equations derived for these parameters by Iyad and Young [10].  
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PHYSICAL EXPERIMENTAL INPUTS 
 

The parameters of this potential function were calculated using the experimental values for 

the elastic constants, bulk modulus and the lattice constant of the metallic cubes. These 

experimental physical inputs used in the various fittings carried out in this study are put 

together in Table 1.  

 

Table1. Experimental physical input for the BCC metals. The experimental inputs are the  

Lattice constants, a  and Cohesive energies, Ec  and are from  Ferrant [11], Bulk modulus, 0B  

are from Kittel [12], and Rose, Smith and Ferrant [11]; monovacancy formation energies, 
F

ivE  

are from  Johnson and Oh [13] and Elastic constants, 441211 C and C ,C  are from Simmons and 

Wang [14].  

Metals Cohesive 

Energy 

E  (eV) 

Lattice 

Constant 

 a(A) 

Vacancy 

Formation 

Energy 
F

ivE  (eV) 

     Elastic Constants 

     (
312 /10 cmergin ) 

Bulk Modulus       

       B 

)/10 ( 312 cmergin

 
11C  12C  44C  

V 5.310 3.3000 2.20 2.2900 1.2100 0.4440 1.5700 

Nb 7.570 3.3000 2.60 2.4650 1.3450 0.2873 1.7020 

Ta 8.100 3.3000 2.80 2.6680 1.6110 0.8249 2.0000 

Mo 6.820 3.1500 3.00 4.6480 1.6160 1.0890 2.7250 

W 8.660 3.1600 4.00 5.2270 2.0450 1.6060 3.2300 

Fe 4.290 2.8600 1.60 2.3310 1.3544 1.1783 1.6800 
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RESULTS 

 

Calculated values of elastic constants 441211  and   , ccc  from equations (21) – (23), are put 

together in table 3.0. The first row in each of the column on the table contains the values of 

the elastic constants obtained from this study, followed by the experimental values. The 

elastic constants are expressed in 
3

/ meV . These values are good agreement with the 

experimental values. 

 

  Table 2.0 Calculated values of elastic constants and their respective experimental values.  

Metals 
11C  12C  44C  

V 1.2008372 

1.4292937 

0.9140063 

0.7552163 

0.5214851 

0.2771206 

Nb 1.1965481 

1.5385192 

1.003126 

0.8394759 

0.6586538 

0.1793170 

Ta 1.5935739 

1.6652207 

0.9573755 

1.0054987 

0.8795332 

0.7969466 

Mo 1.7843521 

2.901092 

0.9655368 

1.0086195 

0.6795332 

0.7969466 

W 3.7002133 

3.2624096 

2.3014341 

1.2763779 

1.7011671 

1.0023779 

 Fe 2.2510173 

1.4548836 

1.3453429 

0.8453429 

0.9122272 

0.7048564 

 

The values of the parameters of the modulated first order pair potential generated from the 

fittings in equations (5), (6) and (9) are put together in Table 3. 

 

TABLE  3. Calculated values of the parameters of the modulated first order pair potential. 

 

Metal     )(eVe  2210)( xeVP  

V 5.2667 5.2894 1.7635 5.31 

Nb 4.6239 4.6245 2.5141 7.57 

Ta 4.6930 4.7088 2.6901 8.10 

Mo 5.7923 5.7941 2.2650 6.82 

W 5.5359 5.5501 2.8761 8.66 

Fe 4.6324 4.6585 1.4247 4.29 

 

DISCUSSION 

 

The applicability of the potentials in this present model was tested by applying the model to 

predict relationship between the pressure and fractional decrease in the volume of the metals. 

This relationship is expressed in equation of state (15), which represents the equation of state 

for the selected bcc metals. The plots for the equation of state of the different metals are 

shown in Figure 3 for (Nb, W, V and Ta). The curves obtained from this study for metals W 

and V show a better match with those of the experimental curves than for Ta and Nb. At low 

values of fractional decrease in volume, all the curves match very well with the experimental 

curves.  
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The calculated values for the elastic constants 441211       , CandCC   give the expected trend of 

magnitude of the elastic constants ( 441211     CCC  ) for each of the selected metal and their 

values are in good agreement with those of the experimental values taken from Kittel and 

Handbook of Chemistry and Physics, ed., R. C Weast, CRC, Boca Raton. F. L [15], and the 

values predicted for the three elastic constants were consistently positive.  

 

  
These meet with the conditions (3 and 4) as set by Girifalco and Weizer [8].  

 

The first derivative rr  )(   of the pair potential function is given  
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jeeje eMrrrrPT
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


  

whose functional plot is shown in fig 5 shows that the values of )(/ r are attractive at large r  

and repulsive at small r ; therefore, )(r have a minimum at some point err  . This again 

satisfies the second condition as stated by Girifalco and Weizer [8].  

 

CONCLUSION 

 

This paper proffers an alternative process for solving a pair potential function written in form 

of a polynomial, in this, case a first order polynomial modulated by a simple exponential 

function. The new potential model has a simple functional form with three unknown 

parameters and is easy to be used in a computer simulation. The potential parameters were 

determined by fitting the pure metal bulk properties of the selected bcc metals: equilibrium 
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lattice constants, a , the elastic constants, ( 441211 C and    , CC ) and the cohesive energy, cE . 

The fitting procedure has been applied to six selected bcc metals; Nb, V, Mo, W, Ta and Fe. 

The validity test on the pair potential function showed that this function does not only predict 

the energetic of a vibrating atom about their mean position but it also satisfies the 

conformable conditions (1-4) by Girifalco and Weizer. It can be concluded here that simple 

structured pair potential function which describes anharmonic form of vibrating atom is 

sufficient and can be more easily adapted to calculate energetics of bcc metals.      
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