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ABSTRACT 

 

In this paper, the author presents the algorithms and numerical procedures for the control of 

going vessels to ensure the implementation of the processes of oncoming traffic. The 

development of these algorithms performed so that the class limitations are imposed on the 

control action and phase position can be easily expanded to restrictions on the rate of variable 

control or the acceleration, with the general form of this algorithm is fully maintained. This 

property allows them to use these algorithms for the synthesis of control systems and 

controlling the power plant complex in order to ensure safe navigation and obtaining 

economical control modes. In some cases, it is sufficient to purely qualitative assessment of 

the proposed algorithm to generate the correct control. But most require specific, that is, 

numerical solutions. This led to the development of such control uses the principle of 

maximum of LS. Pontryagina. The paper devotes the algorithm for ship control as: meeting 

movement; the predetermined moving area; the environmental variation of a time function. 

 

Keywords: Ship control in a predetermined moving area, Ship control in meeting motion, 

Ship control in environment variation of time function. 

 

INTRODUCTION 

 

In maritime practice of Vietnam, when the ships sail through the river in the Mekong delta, 

Vung tau, Saigon, it is necessary the task of forming system of ships that is the task of the 

meeting of movements. Establishing of the system is started with a leader who is placed at 

the top of the convoy. The task of the remaining ships (mobile systems) is to take their place 

and accepting on the parameters of motion with the leader ship. In this situation, it should be 

carried out assessment of the dynamics of mobile systems and the initial values of the phase 

coordinates. Also the question is how to control the ship approach the leader ship soonest. 

 

LITERATURE REVIEW 

 

In this subject, there are researches of authors such as Krasovsky A.A (1999), Peshekhonov 

V.G (2000), Kolesnikov A.A (2002), Astana Y.M (2002), V.S Medvedev et al. (2005), 

Hecht-Nielsen r. (2007), Stone M. (2009), Weierstrass K (2010). Their works are based on 

the classical methods of construction of automatic control systems and in particular the ship’s 

course allows classifying the type of techniques used by the mathematical model of the 

vessel, processed information, methods of adaptation, design features. In this paper, the 

author suggests the algorithm for ship control as: meeting movement; the predetermined 

moving area; the environmental variation of a time function. 

 

METHODOLOGY 

 

It’s considered the way of decisions based on the Mayer’s approach in the minimum principle 

that allows bringing the interesting analytical solutions to numerical values. It’s used the 

system of equations: 
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Where: l-the distance between the leader and the vessel; 

vc - speed of own ship; 

vl - the speed of the leader; 

l  - Manipulated leader (speed of diesel engine); 

c - Manipulated vessel (speed of diesel engine); 

, , ,c l c la a k k  -  Constant coefficients. 

The impact of restrictions are applied on the ship control 

 max max;l l c c    (2) 

The value l  is determined by a fixed subsystem based on a predetermined motion 

technology of ships. The control c  is selected by the captain of vessels. It must be such that 

the time interval 0 kt t   the following conditions are met the requirement , 0 l cv v l  

Here are kt  - the finishing time of controlled motion of ships. 

Found a control law for speed of ship’s diesel engine, which provides a minimum of time, 

during which there will be equality l cv v  speeds and the distance between the “leader” and 

the following ship will be 0l  . The characteristics for the development of a mathematical 

model of the ship fuel consumption power plant. 

With a decrease in the degree of automation that controls ship skipper on the basis of the 

program generated a stationary system, the dimension of the problem can be reduced by 

excluding from the general equation of a diesel engine, and the time constant is small in 

comparison with the time constant of the vessel. 

It’s introduced a new coordinate: 

 T x   (3) 

Moreover, kT t . Criterion-based control (3) has the form: min
0

T
G x    

The Hamiltonian: 

      1 2 3 4c l c c c c l l l lH v v k a v k a v             (4) 

The equations to determine the auxiliary variation: 
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 (5) 

The transversal condition is written: 

 1 2 3 4 0[ ] 0T
c lx H l v v x                 

This problem has a first integral. Due to the fact that T - available at the right end and at t = 0, 

v = constant, vc = 0, l = 0, and t = T, vl = vc, l = lk in equation (4) is possible when: 

 4 1, 0.TH      (6) 

But H = constant, the section t = 0÷T, so the first task is integral 

 1 2 3 4( ) ( ) ( ) 0c l с с с c l l l lv v к а v к а v              (7) 

The switching function of the manipulated variation is determined from such an expression: 

 2 1 1

1
ca t

c

c e
a

     (8) 
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As follows from the system (5) 1 const  , in the area t = 0 ÷ T 

It’s found constants 1с  and 1  in equation (8). To do this, write the first integral for the time

пt t , taking into account (6), where пt  - the time when the function 2  changes the sign, 

that is, it switches control actions с : 

 1( ) 1 0c lv v     

From whence 

 1

1

( )
пc l t tv v







  (9) 

At time пtt  , 
maxc cv v . 

Write the first integral for the time 0t  . 
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From equation (10) the initial value of 20 is found: 
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With the help of (8, 9, and 10), a constant 1с is defined: 
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The first integral equation and formula (8) is used to determine the control time t T and 

torque switching control action пtt  . At the point in time, there is t T . 

 2 1 1

1
ca T
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c

c e
a

    (13) 

Using the expression (7) for t T , it’s obtained: 
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1
T
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
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  (14) 

It’s substituted equations (13), (9), (12) and (14) and solved the resulting expression for the 

unknown T. 
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In the formula (15) the following notations are used: 
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Define the time switch control action c . To do this, it’s written equation (8) for the time пt t  

 2 1 1

1
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But пt t , 2 0   so: 
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Where: 
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It can be found the value of the path, which must pass the ship to enter the control zone. From 

the system of equations (1), it’s obtained: 
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nl  - the initial distance between the ship and the “leader”. 

It’s considered the example. Using the obtained expression, it’s found the numerical values of 

, пT t  and l , given the following factors: 

 0.01733ca  l/s, 0.00284ск   m/s 

The initial values of the phase coordinate from the constraints (2) are: 

 0, 0, 2.5c lt v v   m/s, 36.6с  l/s, 0.nl   

The final values of the phase coordinate are: 

 , 2.5ct T v  m/s 2.5lv  m/s, 15.4c  l/s 

The maximum value of the velocity of longitudinal movement of the vessel: 

 
max

5.92cv  m/s 

The values of the vector components of   in considering (11) at time 0t   are: 

  10 0.2924  , 20 16.66   

The velocity of the “leader” takes constant time interval equal to 0t T   and 2.5lv   m/s 

Doing calculations using formulas (15), (16), (17), (18), (19), it can be obtained the following 

variables values of interest: 

 272.6T  s, 253.1пt  s, 1117.2l  m. 

 

Control of the Vessel’s Side at a Meeting Movement  

 

These controls allow the required lateral displacement of the vessel in a mooring of a vessel 

to another, or when approaching to a predetermined point mooring, or fuel during filling of 

the tanker vessel. Availability of this algorithm in a stationary system, such as the CPU 

controller of navigable channel to determine location on the track committed data processing 

steps and their duration in time, properly consider constraints on the phase position and the 

geometrical dimensions of the fairway. 

 

Stationary system in these conditions can take on a coordinating role in solving these 

problems and thereby increase the effectiveness of their implementation in the real world. 

Figure 1 presented a plan speeds ship in longitudinal and transverse directions. It follows 

from this plan, the rate of lateral movement will be determined as 

 0 0 1sin ( )hv v      (20) 

Equation (20) can easily be simplified, considering that the angle increment rate 0 1     is 

sufficiently small and the conditions of the river channel do not exceed 5
0
 - 7

0
. Then it can be 

obtained the following: 

 0hv v    (21) 

The magnitude of lateral movement is determined by the following equation: 

 
2

1

0

t

t

h v dt   (22) 

If we take the rate of longitudinal motion constant, the differential equation for the lateral 

movement will be linear: 

 0

dh
v

dt
  (23) 

Given the level of control the initial system of equations is a lateral movement: 



European Journal of Engineering and Technology  Vol. 3 No. 7, 2015 
  ISSN 2056-5860             

Progressive Academic Publishing, UK Page 70  www.idpublications.org 

 
0

31

, ,

.p

dh d
v

dt dt

d
a к

dt









   


   



 (24) 

Where 31 1 ,а к к Т 
    

We find ( )р р t   control which takes an object from the initial state: 00, 0, , 0,t h        

To the final state: 

 , , minT Tt T h h G h h       (25) 

And ,Т  ,   - are free 

Functional select in this form: 

 TJ    (26) 

 
Figure 1. Terms of speed of the vessel in the longitudinal and transverse directions 

 

It’s assumed that the curves , ,h    are smooth functions (due to the large inertia of the 

object, this conclusion is true), and the function p  is piecewise continuous. Basing on those 

functions the functional (26) is defined. 

 

Among the acceptable curves it’s wanted to find the one that minimizes the functional (26). 

Physically, this means the need for a given lateral movement at the lowest-possible changes 

azimuth vessel. This is necessary when the ship navigates through a narrow fairway to avoid 

grounding in the shallows and colliding to the coast and slopes. 

The control action in the process control will become: 

 
max maxp p p      (27) 

It’s formed the Hamiltonian H: 

 0 1 2 31 3( )рH v к а         (28) 

Euler-Lagrange equations: 
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 (29) 

The equations of the problem are the first integral: 
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 0 1 2 31 3( )рv к а c         (30) 

Terms of transversal tasks: 

 1 2 3 0[ ] 0Tcdt h              (31) 

Since the variable h at time T is fixed, then the conditions (31) can be written as 

 2 3 0[(1 ) ] 0Tc t           (32) 

Equation (32) in mind the rules of selection is possible if only when 

 2 31, 0, 0.T Tc       (33) 

It’s found the control law: 

 3 0
p

H
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On the basis of (34), it’s obtained: 
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Figure 2. The phase position of the lateral movement of ship 

 

The function of switching control action is investigated, it is transformed the equations (29) 

to the form: 
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3 3
31 0 12

0
d d

a v c
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 
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The solution 3  from the integral equation (36) is 

 312 0 0 1 31 2
3 3 1 2

31 31

a t v v c a c
c e c t

a a




     (37) 

It’s found the roots of the equation (37), provided that at the time of sign change of control 

action 3 0  . To do this, it’s transformed (37) as: 
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The notation is given: 

 31 0 1 4
1 2

3 3

;
a t v c c

y e y t
c T c T



 
 

    

Figure 2 is graphically constructed according to 1 1( )y y t and 2 2 ( )y y t . The points of 

intersection of these curves define the moments of switching control from 
maxp  to 

maxp . 

 

Ship Control to Sail in a Predetermined Moving Area 

 

The control task ensures that there is a safe environment differences in cramped vessels 

sailing conditions, when moving along a predetermined path, for example, to pass the 

obstacles encountered with known coordinates in advance or obstacles that appear randomly 

on the fairway. As restrictions on river conditions may be the coast, the width of the fairway, 

counter and passing ships, waterworks. 

Create a model of divergence of two ships P and E. 

 cos cosp ED v v     (39) 

Where 

D - the distance between the ships 

pv - speed of the vessel P; 

- speed of the vessel E; 

,   - course angle. 

It’s assumed that the discrepancy has occurred at time T at a distance of perpendicular TD  if, 

starting from a certain point in time T t , the distance D begins to increase. And t  can be 

arbitrarily small. 

The first problem is solved without variation inertia of bearings   and  . Let 

 cos , cosU V     (40) 

Place here the restrictions on control 
 1, 1U V   

It’s assumed the initial and final conditions for the solution of problem 

 00 ,

t

at t D D

at t T D D
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
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It will be solved the quadratic functional 

 2 2 2

0

( )

T

TJ D D cU qV dt    
    (42) 

In order to find the controls of U and V that minimizes the function (42), it should be used the 

minimum principle. The Hamiltonian is written: 

 
2 2 2

0 2( ) ( )T p EH D D cU qV x v U v V x      
    (43) 

From this the control function is obtained 

 
2

1 1,
2 2

p E
v v

U x V x
c q

      (44) 

The equations for determining the components of the vector 0 1( , )x x x x  will be: 

Ev
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Accept 0 1х   and write the original system of differential equations: 
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  (46) 

It’s introduced by the variation law of the distance D, for which it must be excluded 1x from 

the system of equations (46): 

 
2 22 2
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Let 

 
2 2

1

p E

a
v v

c q


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Then equation (47) is as follows: 

 TaD D D    (49) 

It’s obtained the roots of the characteristic equation: 

 1,2
1P

a
    (50) 

In order to ensure the stability of the control on the basis of the positive root, it’s excluded: 

 ( 1 )
1

a t
TD c e D    (51) 

Considering the initial conditions, the constant c1 is found: 

1 0 Tc D D   

Then a solution of (51) will look like this: 

 ( 1 )
0 1( ) a t

T TD D D c e D     (52) 

Using the equation (52) to find the solution 1x  

 ( 1 )
1 02( ) 4 ,a t

T Tx D D e D      (53) 

 ( 1 )
1 0 22( ) 4a t

T Tx D D ae D c      (54) 

The control (44) in view of (54) will be as follows: 
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a tE
T T
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U D D a e D t c

c

v
V D D a e D t c

q

  (55) 

Speed pv  and Ev  depends on the mode of the power plant which are determined by speed 

characteristics. 

 

The controls of the two vessels in avoidance are programmed. It’s required the initial 

information of the initial status 0D , the final perpendicular distance TD  and speed of the first 

and second ships or their power plant. 

The advantage of these controls is unnecessary for continuous measurements of the velocities 

pv  and Ev . 

The second task is to find the control that takes into account the variable inertia of the angles 

  and  . Differential equations of the ships in avoidance write as: 
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The solution is considered the function (42). The initial condition is: 

If  0 0 00, , , .t D D        (57) 

And the last condition is 

If  , , , .
2 2

Tt T D D
 

       (58) 

Limits on control: 

 max max,U U V V    (59) 

The Hamiltonian: 

 2 2 2
0 1 2 3( ) ( cos cos ) .T p EH x D D cU qV x v v x U x V         
    (60) 

It’s found the controls U and V, which deliver the maximum of H: 
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  (61) 

The equation of finding ix  is written: 
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2 1 3 1
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T

p E

x x D D x

x v x x v x
 (62) 

Based on the fact that the vector ),,( 30 xxxx   does not depend on 0x , it’s assumed 

0 1x   . Using equations of (56, 61, and 62), it’s obtained: 

 2 3

1 2 1 3 1
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p E

T p E

D v v cx q x

x D D x v x x v x
 (63) 

The system of equations (63) can be integrated in elementary functions. After integrating, it’s 

obtained the control function of time. In order to implement, it’s required to know the initial 

and final conditions for solving the problem, the speed of ships and their corresponding 

modes of Main Engine. 

 

The second task gives the opportunity to get a control that provides discrepancy with greater 

precision, since the dimension of the problem is higher than the first. 

 

The Ship Control Mode in the Head-On Navigation with Environmental Changes as a 

Function of Time 

 

Considering the ship dynamic as a mobile system is especially necessary when it comes to 

solving the above tasks. The exact implementation of the timetable is often significantly more 

cost-effective than the longitudinal motion control modes, which is intended to fuel economy. 

The control task of the dynamics of longitudinal motion of the mobile system was considered 

in. However, the problems of control are poorly understood and especially the problem of 

dynamics of energy in motion. No quantitative estimates of control is dynamic object, the 

qualitative side of the solutions obtained is too general, does not allow to use these results in 

the synthesis of both mobile and stationary control systems. 

 

It’s put the problem of finding the control mode of (Diesel Engine Unit) DEU’s operation for 

longitudinal movement of the ship to the complex conditions of some uncertainty in the 

initial information about the environment. As shown, the characteristics are determined by 
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the generalized environmental parameter. It’s assumed that this parameter is a function of 

time. This corresponds to the action on the set of disturbances or wind. Figure 3 shows the 

dependence of 
dG

dt
 on   and h. The value can be represented as: 

 2m
q

dG
к

dt

   (64) 

and the value of  : 

 h
qк h    (65) 

The equation can be written in fuel consumption: 

 hm
g g

dG
к к h

dt

    (66) 

where h - the movement of rail diesel injection pumps. 

 
Figure. 3. Specifications for mathematical model of Ship’s fuel power plant. 

 

The equations governing the motion of the ship's complex dynamics DEU considering 

equations (66), are as follows: 

 

1
( ),

1
,

, .

 



 







    





    


 



c c

c c

h v
q q

g g g

hm
g g

к кdv
v t

dt T T T

к кd
h v

dt T T T

dG ds
к к h v

dt dt

 (67) 

It can be shown that the equation (67) is provided by equations with variable parameters that 

are non-stationary. To do this, it’d do the following formal conversion in the first equation of 

the system (67): 

 
1 1 1

( ) ( ) ( )

с
с

c c

кdv
v к

t dt T t T t





  

  
 
  
 

  (68) 

The equation (68) confirms the conclusion that the system (67) is non-stationary. It’s posed 

the problem of finding h at the controls as follows: finding max(0 )h h h  , which provides for 

a given travel time T, a minimum fuel consumption over the period of time 0 T . The 

problem is formulated as a problem of Mayer and the role of function is the dependent 

relation: 
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 ( , )m mG G v t    (69) 

The boundary conditions are 

 00 0 0at the left end 0, 0

on the right end , ,





     


   

m

T T T

t v G S

t T v free S S
 (70) 

It’s introduced a new variation Z t , and then the equation (67) will be: 

 

1
( ),

1
,

, , 1.

c c

c c c

h v
q q

g g g

hm
g g

к кdv
v t

dt T T T

к кd
h v

dt T T T

dG ds dz
к к h v

dt dt dt

 



 







    





    


  



 (71) 

Due to the fact that it is necessary to check whether there is a control called special. It’s 

writing for the system (71), the Hamiltonian: 

 1 2 3 4 5

1 1
( )

h h
q g hс с

g g
c с с g g g

к кк к
H v t h v к к h v

T Т Т T T T

 
        

  
            
     

  (72) 

The equations for the vector  : 

 

1
1 2 4

2
1 2 3

3 54
1

1
,

1
,

( )
0, 0, .

v
g

c g

hс
g g

c g

с

с

кd

dt T T

кd
к к h

dt T T

d d кd d t

dt dt dt Т dt







  


  

  



  




    


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


 (73) 

The transversal conditions are: 

 3 1 2 4 5 0[(1 ) ] 0T
mG c t v s t                   (74) 

These terms and conditions are written on the assumption that the problem is the first 

integral: 

 1 2 3 4 5

1 1
( )

h v
g g hс с

g g
c с с g g g

к кк к
v t h v к к h v c

T Т Т T T T

 
       

  
            
     

  (75) 

In accordance with the boundary conditions, the transversal condition (74) will be 

 3 5 1 2 0[(1 ) ( ) ] 0T
mG c t v               (76) 

Due to the contingent variations of , ,mG v    in equality (76), it’s only possible when 

4 5 3 2 10, 0, 1, 0, 0T T T T Tc           (according to the condition of the maximum at T - 

fixed). It will be located the control by h. The maximum condition H in h is 

 2 3 0

h
g h

g g
g

кH
к к

h T

 


  


  (77) 

Hence it can be argued that the function will reach to minimum in the control that varies as 

the following law: 

 

max 2 3

2 3

0,

0 0,

h
g h

g g
g

h
g h

g g
g

к
h h at к к

T

к
h at к к

T
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 


  




   


 (78) 
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The transversal conditions make it possible to find the solutions for all the components of the 

vector   and, in particular, 2  and 3 . 

It’s investigating the possibility of singular controls in systems of equations (71) and (72), 

which transform the Hamiltonian 

 
1 1 1 2 2 4 5 2 3

1 1
( )

v h
q g hс с

g g
c с с g g g

к кк к
H v t v v h к к

T Т Т T T T

 
         

   
            
      

 (79) 

Let 

 

0 1 1 1 2 2 4 5

1 2 3

1 1
( ) ,

.

v
gс с

c с с g g

h
g h

g g
g

кк к
H v t v v

T Т Т T T

к
H к к

T
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       
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



  
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 (80) 

Using the Poisson brackets for finding specific controls, it’s obtained: 

  1 1, 0
d

H H H
dt

   (81) 

The Poisson bracket (81) is expanded: 

   32
1 3, 0

h
g h h

g g g g
g

к dd d
H H к к к к

T dt dt dt

   
      

The special control can appear only in terms of even order derivative, so find: 

   
2 2 2

31 2
0 1 32 2 2
, , 0

h
g h h

g g g g
g

к dd H d d d
H H H к к к к

T dt dtdt dt dt

    
       

As 3 0
d

dt


 , it’s obtained 

 
2 2 2

2 2
32 2 2

0h h
g g g g

d d d
к T к к

dt dt dt

  
     (82) 

In which: 
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,
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
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 (83) 

Substituted (83) corresponding to the equation (71) and (73), it’s obtained the following 

system: 
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
 

  
         

        


    
           
        

 (84) 

As 4 c   in all section control with the transversal effect condition is leading to 4 0T  , it’s 

obtained: 

 
2

1
1 1 2 2 1 3 5 3 4 42

( ) ( ) ) 0H H H H H H H Hd H dh
b b c v c t c b b c h

dtdt
             (85) 

In which 
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 (86) 

From equation (85), it is finding the special control: 

 1 1 2 2 1 2 3

4 4

H H H H H

H H

b b c v c c
h

b c

      
 


 (87) 

It should be examined the specific control at G. Kelly’s optimal condition. If the inequality 

(88) is performed the specific control will be optimized: 
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 

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  (88) 

From (77), (78) and 1

H
H

h





, corresponding to (85) it is obtained: 
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Then 
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
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From equation (86), it’s obtained 

 4 3 4 32 2
,

h h
g gH h H h

g g g g

g g

к к
b к к c к к

T T

     

In accordance with (73) and the transversal condition (76), it’s 3 1    so 

 4 4 0H Hb c   (91) 

It means that the G. Kelly’s condition is satisfied and the specific control is optimal. 

With a decrease in the level of automation, where the ship is controlled by the program 

generated from a stationary system, the dimension of the problem can be reduced by 

excluding from the system (71) of a diesel engine that its time constant is too small in 

comparison with the time constant of the vessel. 

Statement of the problem search controls that minimize the function (69) will be considered 

similar. As a control action is used the frequency rotation of diesel. The initial system of 

equations is: 
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 (92) 

The limited condition applied for the control is following: 

 max0      (93) 

The transversal condition: 

 2 1 3 4 0[(1 ) ] 0T
mG c t v s t                (94) 

The Hamiltonian system (92) is the following: 

 2
1 2 3 4

1
( )c c

g
c c c
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T T T

 
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 
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  (95) 

Condition (94) is written on the assumption that the problem is the first integral: 
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In accordance with the boundary conditions of dependence (94) will be the: 

 2 4 1 3 0[(1 ) ( ) ] 0T
mG c t v s               (97) 

Due to the contingent variations of ,mG v  , equality (97) is only possible when 

3 1 2 40, 0, 1, 0T T T T c         . The equations for determining the components of the 

vector will be: 
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 (98) 

It’s found the control by  . The maximum condition H by   will be: 

 1 22 0c
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
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 (99) 

Hence it’s obtained the variation law of   
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 (100) 

Relying on the transversal condition, it will be found the solution for all components of 

vector  

It’s investigated the system (92), (98) and (100) on the possibility of specific controls. The 

Hamiltonian is written as: 
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Let 
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According to equations (98) 2 2c  , but as the transversal condition implies that 2 1T   , so 

 2 1c    (103) 

On the basis of equation (103), the second equation (102) is 

 1 1
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T


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It’d be found 
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And  
22 2

1
12 2 2
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g

c

к dd d
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
 

    (106) 

 

RESULTS  

 

Using the equation (98), the expression (106) can be written in the form:  
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It’s taken into account the conditions (94) and written the solution of the first equation of 

(98): 

 /
1 1

ct T
c e   (108) 

Then, a special control is defined as 
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Where 321 ,, ccc  are constant of integration. 

In this case, it’s investigated the optimal control G. Kelly’s condition:  
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and itself the G. Kelly’s condition 

 
2
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0

d
H

dt





 (111) 

Special controls on the basis of (111), defined by (109) will be optimal. 

 

DISCUSSION 

 

In order to control the motion of ship in complex system such as coastal navigation, there 

should be a number of algorithms to control the ship’s power plant and steering gear system. 

The above-said algorithms allow the mariner evaluates the navigational situation and makes 

the best solutions. The same programs will help the mariner forecasts the ship motion in 

following the real time. These algorithm controls are considered evaluated, supported models 

that obtained the proper programs. They are applied to ensure the ship passing the emergency 

situation. 

 

CONCLUSIONS 

 

The research has obtained the results: 

Proposed the algorithm control of minimum principle on the basis of selection the transversal 

conditions; 

Obtained the algorithm controls of ship’s power plant system that allows approaching the 

leader ship; 

Investigated the programed control of ship’s steering gear that ensures the ship in head-on 

navigation; 

Established the programed control of ship’s power plant system that effected by the variable 

non-linear parameters. 
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