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ABSTRACT 

 

We address a decentralized supply chain in which a manufacturer supplies an item to 

two retailers who compete with each other in an uncertain demand market, 

considering the effects of price sensitivity, demand stimulation and demand leakage. 

The objective is to coordinate the chain and reach Pareto improvement through 

negotiating the two wholesale prices and setting the two buyback prices, from which 

we find a range for each negotiated wholesale price but only one buyback price for 

each retailer to achieve our goal. The conflict of interests between the manufacturer 

and each retailer and the price and inventory competitions between both retailers are 

confirmed. We also learn that the demand-stimulating effect favors the chain profit, 

but the demand-leaking effect prompts the high priced retailer to negotiate a cheaper 

wholesale price and the manufacturer to negotiate an expensive wholesale price with 

the low priced retailer. Many managerial insights are obtained by the numerical 

examples. 

Keywords: Newsvendor; Demand leakage; Demand stimulation; Price competition; 

Inventory competition. 

 

INTRODUCTION 

 

Within a decentralized supply chain, if a manufacturer and a retailer are each seeking 

to optimize their own profits, then a so-called “double-marginalization” phenomenon 
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will be generated (Spengler[22]). This phenomenon will lead the chain to experience 

poor channel profit performances as a result of a less optimal order quantity in 

comparison to a coordinated supply chain. Thus, contractual terms enhancing a 

chain’s profit efficiency in a decentralized supply chain setting have become 

imperative to achieve two purposes, supply chain coordination and Pareto efficiency. 

A contract is said to coordinate a chain if it maximizes the chain’s profit as a whole; a 

contract is said to be Pareto-efficient if each member’s profit is no worse off when the 

contract is in place than it would be in the event of other default contracts (Bose and 

Anand, [5]). 

 

A price-only contract is widely considered to be a basic, simple trade-off in the 

existing literature. In such an agreement, a manufacturer offers no incentive to 

retailer(s), and the retailer(s) then takes all of the responsibility for excess inventory at 

the end of the selling period. However, researchers, including Larivieve and Porteus  

[16], Cachon [7] and Bernstein and Federgruen [4], demonstrated that a price-only 

contract fails to coordinate a supply chain. Conversely, a return-policy contract 

mitigating the risk of over-stocking due to market demand uncertainty is a 

commitment made by a manufacturer to accept his partner’s unsold products 

(Padmanabhan and Png, [18]). Pasternack [19], who was the first to analyze 

manufacturer-retailer channel coordination through return policies for seasonal items, 

contended that return policies could be used as an instrument for supply chain 

coordination. Since then, a number of related articles have been published. Emmons 

and Gilbert [17] investigated the role of return policies in pricing and inventory 

decisions for catalogue goods. Meanwhile, Lau et al. [17] studied the problem of 

demand uncertainty and return policies for a seasonal product. Tsay [24] researched a 

quantity flexibility contract in a newsvendor supply chain, whereas Yao et al. [29] 

addressed demand uncertainty and manufacturer return policies for style-good 

retailing competition. Bose and Anand [5] contributed to a practical finding on return 

policies with exogenous pricing. Yao et al. [28] analyzed the impact of price-

sensitivity factors on a return policy coordinating a supply chain, and Chen [8] 

discussed return policies with a wholesale-price-discount contract in the context of a 

newsvendor setting. Recently, Zheng and Negenborn [31] proposed a negotiation 

model between a supplier and a buyer under demand uncertainty with fixed and 

elastic demands. Qi et al. [20] analyzed game theory in a one manufacturer and two 

retailers supply chain with customer market search, allowing customers to go to 

another retailer if stock out occurs. In this paper, we develop a ( , )w b contract in a 

one-manufacturer-two-retailer decentralized supply chain setting. In our ( , )w b

contract, the manufacturer negotiates a wholesale price with each retailer that is 
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cheaper than that in a price-only contract, and provides each retailer with a buyback 

price to accept all unsold products. Unlike the existing works in the literature, we find 

that although there is a range for each negotiated wholesale price, there is only one 

buyback price for each retailer to coordinate the chain.  

 

In 1980, revenue management (RM) first emerged in the airline industry and has since 

been applied to areas such as media, utilities and retail trade-offs (Weatherford and 

Bodily, [27]). Smith et al. [21] thus found that RM increases revenue by 2-8% without 

increasing the supply of products. Typically, one of the underlying principles of RM 

is to divide a single market into multiple submarkets with different retail prices, such 

as a virtual store vs. a physical store. Accordingly, Zhang et al. [30] modeled demand 

leakage as a function of price difference across a market and investigated the impact 

of demand leakage on a firm’s inventory and pricing decisions. Their result indicates 

that more customer segments do not necessarily outperform a single segment, 

particularly in a highly uncertain demand market. Wang et al. [26] addressed a supply 

chain in which two retailers sell two homogeneous items in a stochastic demand 

market, allowing demand leakage from the high-priced item to the low-priced one. 

They found that high demand uncertainty decreases the chain’s profit, whereas it will 

enhance the chain’s profit efficiency if a return-policy contract is in place. Rather than 

Wang et al. [26], we discuss a supply chain in which two retailers compete with each 

other, selling a single item in an uncertain demand market and allowing demand 

leakage from the high-priced product to the low-priced product. Thus, each retailer 

faces a stochastic demand incorporating the effect of demand leakage, from which we 

learn that the leaking effect is not beneficial to the chain profit if our ( , )w b contract is 

implemented. This suggests that the manufacturer favors a market without demand 

leakage. This result conforms to that of Zhang et al. [30], but is opposite to that if our 

contract in not in place. 

 

Empirically, the stock-level demand stimulation effect has been recognized in both 

marketing and operations research on inventory management. For some items, such as 

books, magazines, fashion apparel or 3c products, displaying a large stockpile of 

inventory on shelf space can actually increase sales. This phenomenon is called the 

customers’ impulse-purchase and was first introduced by Balakrishnan et al. [2] in 

terms of the effects of increasing product visibility, kindling latent demand, signaling 

a popular product and providing an assurance of future availability. Prior to this 

discovery, Dana and Petruzzi [10] also claimed that higher stock levels can increase 

sales because the consumer utility increases as the item’s fill rate increases. A number 

of articles, such as those by Corstjens and Doyle [9], Bultez and Naert [6] and 
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Eliashberg and Steinberg [12], studied inventory demand stimulation and developed 

mathematical models for shelf space allocation. Gupta and Vrat [15], Baker and 

Urban [1], Goh [14], Urban [25] and Balakrishnan et al. [3] all stressed the use of an 

optimal inventory policy with stock-level-dependent demand functions. From a 

retailer’s perspective, Stavrulaki [23] managed inventory decisions in the framework 

of a single-period, stock-level-dependent demand setting that is solved using the 

heuristic solution approach. In addition, Devangan et al. [11] considered an 

individually rational buyback contract with inventory level dependent demand, in 

which they assumed that shelf space inventory is used a lever to stimulate demand, 

and used the Shapley value from cooperative game theory to ensure fairness and 

individual rationality in their buyback contract.  

   

This paper assumes both retailers’ stochastic demands considering the effects of price 

elasticity, inventory stimulation and demand leakage as well as random demand. The 

manufacturer offers a ( , )w b contract to coordinate the chain and reach Pareto 

improvement, during which the following questions will be investigated. (1) How will 

all chain members respond to the effect of demand stimulation and/or demand leakage 

if our contract is in place? (2) What leads the manufacturer to set a buyback price for 

each retailer? (3) How will the manufacturer negotiate a wholesale price with each 

retailer? (4) What is our contract’s profit efficiency under different parameter 

circumstances? 

   

The remainder of this article is organized as follows. Assumptions and notations are 

given in Section 2, along with relevant models and corresponding analyses. 

Numerical examples are conducted in Section 3, accompanied by managerial insights. 

Contributions and potential research directions for future studies are presented in 

Section 4. All of the proofs are given in the Appendix. 

 

The models 

 

The problem investigated in the study is as follows. A manufacturer supplies a 

newsvendor item to two retailers who then compete with each other in a stochastic 

demand market. Each retailer i , 1, 2i  , and j =3 i , faces a deterministic demand 

( , )i i i i i i i i jd p q L p p      and a random demand i [0, )  , where i >0 is the 

realized demand, i >0 is the sensitivity parameter of the retail price ip , o< i <1 is 

the sensitivity parameter of demand stimulation for the order quantity iq , ( , )i i jL p p =
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i ( )i jp p   ( )j j ip p   is the amount of demand leakage from high-priced 

product to low-priced product with demand leakage rate i and j , and ( ) max{ ,0}  

. Define ( )if   and ( )iF   as the probability density function and cumulative distribution 

function for i , respectively; thus, retailer i ’s total demand is assumed to be i i ix d  

( , )i i i i i i i jp q L p p      i . Meanwhile, let c  be the unit production cost, w  be 

the unit wholesale price for the two retailers, and zero salvage is assumed for unsold 

products. 

 

Decentralized supply chain with a price-only contract 

 

In this scenario, each retailer maximizes his expected profit by determining his retail 

price and order quantity; the manufacturer then determines the wholesale prices to 

optimize his expected profit subject to the two retailers’ optimal retailer prices and 

orders. Thus, for 1, 2i  , and j =3 i , let iq = id + iz  be the retailer i ’s order quantity 

with iz  as a safety stock level. Thus, according to ( , )i i i i i i i i jd p q L p p      , we 

obtain iq = id + iz = ( , )i i i i i i i jp q L p p     + iz ; thus, iq  can be regarded as a 

function of ip  and iz  below. 

    iq
1

( ( , ) )
1

i i i i i j i

i

p L p p z 


   


                                 (1) 

Accordingly, retailer i ’s profit is obtained by 

    
( ) ( )

( )

i i i i i i i i i i

i i i i

p x wq p w q p z z

p w q z

 



     


 
 

and his expected profit, denoted by [ ( , )]i i iE p z , is given by 

    [ ( , )]i i iE p z ( ) ( )i i i i ip w q p z                                     (2) 
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where 
0

( ) ( ) ( )
iz

i i i i i i iz z f d     represents leftover inventory. Thus, retailer i ’s 

objective in this scenario is to determine ip  and iz  to maximize [ ( , )]i i iE p z . Once 

ip  and iz  are obtained, iq  can be determined according to Eq. (1). Therefore, the 

following propositions are provided to solve the optimization problem. 

Proposition 1  For 1, 2i  , and j =3 i , retailer i ’s expected profit [ ( , )]i i iE p z  is 

concave in ip  and iz  if  
1

min{ , } ( )
1

i i j i i

i

p f z  


 


. 

  Proposition 1 provides a sufficient condition to optimize [ ( , )]i i iE p z , indicating that 

the optimal safety stock level iz  would never occur at where ( )i if z  is considerably 

small and needs a large price ip  to meet the condition. This condition also suggests 

that the effects of price sensitivity i  and demand leakage i  help facilitate the 

optimization of [ ( , )]i i iE p z , whereas the effect of demand stimulation i  counteracts 

the result. This could be because a higher level of demand stimulation i , according to 

Eq. (1), needs a larger order quantity to reach the concave [ ( , )]i i iE p z ; however, this 

larger order quantity increases his risk of overstock. 

  Further, if retailer i ’s optimal ip , iz  and iq  exist, their optimal necessary conditions 

would be given as follows. 

    

1( ) ( ) 0 (3)
1

( ) 0 (4)
1

(1 ) ( , ) (5)

i
i i i i

i

i
i i

i

i i i i i i i j i

l
q p w z

p w
p F z

q p L p p z







  

 
    


 

 


     


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where 1l
1 1 2

2 1 2

( , )i i j

i

L p p p p

p pp





  
  

  
 is negative, And Eqs. (3) and (4) reveal how 

ip  associates with iz below. 

Proposition 2  Each retailer’s optimal retail price ip  positively correlates with his 

optimal safety stock level iz .      

  This positive correlation between price and inventory suggests that each retailer 

should stockpile a larger safety inventory if an only if he sets a higher price, the 

managerial meaning of which is given below. If each retailer intends to set a higher 

price, he then should play a larger inventory because it can offset sales losses due to 

the higher pricing as well as entice more sales due to the stock-dependent demand. By 

contrast, if each retailer intends to stockpile a larger inventory to entice more demand, 

his retail price should be raised to reduce the amount of the deterministic demand to 

avoid overstock. More importantly, this positive correlation inspires us to prove the 

unique optimal solution of Eqs. (3)-(5) as follows. 

 

Proposition 3  For 1, 2i  , and j =3 i , retailer i ’s optimal retail price, safety stock 

level and order quantity uniquely exist in the range of i
i

i

c p



  . 

  Note that the range of i
i

i

c p



  in Proposition 3 assures non-negative 

deterministic demand i i ip  . Once retailer i ’s optimal values are set, we examine 

how these values will interact with the wholesale price. Thus, if regarding ip , iz and iq

as ( )ip w , ( )iz w and ( )iq w , respectively, in Eqs. (3)-(5), the following result is 

obtained. 

 

Proposition 4  Each retailer’s optimal safety stock level and order quantity decrease, 

but the optimal retail price increases in the wholesale price. 

 

This result clearly explains the conflict of interests between the manufacturer and 

each retailer in the following patterns. If the manufacturer sets a higher wholesale 

price, it can not only stop each retailer from placing larger order but also urge them to 
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set higher retail prices to customers; the consequence is then to reduce the amounts of 

sales and thereby all members’ profits. Conversely, although the manufacturer’s 

cheaper wholesale price can attract both retailers’ large orders and allow them to set 

cheaper retail prices to customers; the cheaper-retail-price setting, however, will 

impair all members’ profit margins despite the large orders.   

 

We next investigate how both retailers would compete with each other in this 

competitive environment. 

 

Proposition 5  Both retailers’ optimal values are positively correlated. 

This result reveals price competition and inventory competition between both retailers 

as follows. The price competition implies that if one of the two retailers would slash 

his price for demand stimulation, the other should follow; consequently, both 

retailers’ marginal profits decrease. The inventory competition implies that if one of 

the two retailers would order more products for demand stimulation, the other should 

follow; consequently, both retailers’ risks of overstock increase. The two 

competitions, meanwhile, lead the two retailers to a competing equilibrium below. 

 

Proposition 6  There exists a unique Nash equilibrium between the two retailers in 

the competing market. 

As for the manufacturer’s objective in this scenario, he will determine the wholesale 

price that maximizes his expected profit [ ( )]E w = 1 2( )( )w c q q   subject to both 

retailers’ optimal necessary conditions, that is, max [ ( )]
w

E w  s.t Eqs. (3)-(5). To this 

end, the following results are needed. 

 

Proposition 7  The manufacturer’s expected profit [ ( )]E w  is concave in w , and the 

optimal w  uniquely exists in w c . 

  After completing the decentralized supply chain with a price-only contract, a 

centralized supply chain is developed as follows. 

 

Centralized supply chain 

 

In this scenario, we assume that the manufacturer can sell the item himself. Thus, 

similar to Eq. (2), if we let p 1 2( , )p p  and z 1 2( , )z z  for convenience, his 

expected profit is then given by 
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    [ ( , )]cE p z  
2

1

( ) ( )i i i i

i

p c q p z


                                   (6) 

  Thus, his objective is to determine ip  and iz , 1, 2i   to maximize [ ( , )]cE p z . We 

first note that in this scenario, iq in Eq. (1) now depends on ip , iz and jp . In this way, 

the concave [ ( , )]cE p z  and its optimal values are obtained by the following result. 

Proposition 8  [ ( , ) ]cE p z  is concave in p and z , and the optimal ip , iz  and iq  

uniquely exist in the following equations. For 1, 2i  , j =3 i   

    

1 2( ) ( ) ( ) 0
1 1

( ) 0
1

(1 ) ( , )

i
i i i i j

i j

i
i i

i

i i i i i i i j i

l l
q p c z p c

p c
p F z

q p L p p z



 



  

 
       


 

 


     



 

where 2l
1 1 2

2 1 2

( , )i i j

j

L p p p p

p pp





 
  

 
 = 1l  

 

Decentralized supply chain with our ( , )w b contract 

 

Using the former two scenarios as benchmarks, we develop our ( , )w b contract below. 

Before the selling period: 

(1) The manufacturer will accept retailer i ’s, 1, 2i  , all unsold products at the end of 

the selling period at a buyback price ib if retailer i plays order up to the level of 
c

iq as 

in the centralized supply chain, where 
c

iq is the optimal order in the centralized supply 

chain. 

(2) The manufacturer then negotiates a wholesale price iw  with retailer i  that is 

cheaper than that in the price-only contract. 

(3) The game’s objective is to coordinate the chain and reach Pareto improvement 

through negotiating the two buyback prices and the two wholesale prices. 

After the selling period: 
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(1) The manufacturer accepts all of the two retailers’ unsold products. 

  Accordingly, ( , )c

i i i i i i i i i i j ix d p q L p p            is retailer i ’s demand if 

his order is up to
c

iq , and his expected profit is then given by 

    [ ( )] ( ) ( ) ( )b c

i i i i i i i i iE p p w q p b z                                    (7) 

where we regard retailer i ’s profit in Eq. (7) as [ ( )]b

i iE p rather than [ ( , )]b

i i iE p z  

because ( )i i iz z p satisfies (1 ) ( , )c

i i i i i i i j iq p L p p z       , according to Eq. (1). 

Further, Eq. (7) implies that even retailer i accepts
c

iq , he still could optimize his 

[ ( )]b

i iE p by setting ip that may not coordinate the chain. Thus, the following results 

are derived. 

Proposition 9  For 1, 2i  , retailer i ’s expected profit [ ( )]b

i iE p  is concave in ip , 

and the optimal ip and iz uniquely exist in the following equations. 

    
1( ) ( ) ( )( ) 0c

i i i i i i iq z p b F z l                                     (8) 

    (1 ) ( , )c

i i i i i i i j iq p L p p z                                        (9) 

  But, as analyzed, retailer i ’s order 
c

iq will coordinate the chain only when the 

optimal values in Eqs. (8) and (9) are exactly the same as in the centralized supply 

chain, that is, ip =
c

ip  and iz =
c

iz , according to which we obtain each retailer’s 

buyback price below. 

Proposition 10  In our ( , )w b  contract, 
1

( )

( ) ( )

c c
c i i i

i i c

i i i

q z
b p

l F z


 


, 1, 2i  is retailer i ’s 

buyback price to coordinate the chain. 

  After the buyback prices, the manufacturer will negotiate a wholesale price with 

each retailer to reach Pareto efficiency; thus, according to Eq. (7), retailer i ’s expected 

profit is now a function of the negotiated wholesale price iw , which is given by
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[ ( )] ( )b c c

i i i i iE w p w q    ( ) ( )c c

i i i ip b z  , and the manufacturer’s expected profit is

[ ( )]b

mE w   
2

1

( ) ( )c c

i i i i i

i

w c q b z


   , where 1 2( , )w w w and ib  is given in 

Proposition 10. Thus, [ ( )]b

i iE w > i

and [ ( )]b

mE w > m


 are needed to attain a win-

win game, where i

and m


are retailer i ’s and the manufacturer’s optimal expected 

profits in the price-only contract, respectively. Accordingly, a range for each 

negotiated wholesale price is obtained below. 

 

Proposition 11  In our ( , )w b  contract, a range for each negotiated wholesale price to 

reach Pareto efficiency is given by the following constraints. For 1, 2i   

     
1

( ) ( )c c c c

i i i i i i ic

i

w p q p b z
q

                                      (10) 

     
2 2

1 1

( )c c c

i i i i i i m

i i

q w cq b z  

 

                                       (11) 

    iw w                                                        (12) 

Note that iw w assures the cheaper negotiated iw  than the optimal w  in the price-

only contract. 

 

Numerical examples 

 The parameters of our examples are as follows: c =5, 1 =80, 2 =180, 1 =3, 2 =8 

and [0,50]U . Define I %=
 








as a profit increment from the price-only 

contract optimal profit  to our contract profit . Table 1 includes four cases in which 

case 1 vs. case 2 and case 3 vs. case 4 are for demand leakage, and case 1 vs. case 3 

and case 2 vs. case 4 are for demand stimulation. Table 2 tabulates all of our 

negotiated values by comparing them with those in the price-only contract, along with 

our Pareto-improved illustration in Fig 1. Figs 2-5 display each parameter’s impact on 

the chain’s profit. 

 

Regarding the demand leakage, Table 1 obviously confirms that price differential 

1 2p p  with leaking effect is less than that without leaking effect, which is because 
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the effect prevents retailer 1 from setting a higher price to retain his sales. This effect 

also leads to cheaper prices, except for 2

cp . Taking case 1 vs. case 2 as an example, 

only 2

cp =16.40 in case 1 is higher than 2

cp =15.76 in case 2. This is consistent with 

Zhang et al. [30] that if the manufacturer can sell the item himself in a market without 

demand leakage, he will divide the market into two submarkets, one with a high profit 

margin and the other with a low profit margin, leading to more profit as a whole. 

Thus, Table 1 shows better c =2020.08 and c =1348.28 in cases 2 and 4, 

respectively. Meanwhile, the leaking effect urges both retailers’ large inventories in 

the price-only contract, which benefits retailer 2 and the manufacturer. It, however, is 

disadvantageous to retailer 1. As shown in Table 1, 1

=191.06 as 1q

=45.28 in case 1 

is worse than 1

=263.22 as 1q

=43.07 in case 2. 

As for the demand stimulation, Table 1 shows that it benefits all members in all cases. 

Case 1 vs. case 3, for example, shows that all members’ and chain’s profits in case 1 

overshadow those in case 3. This is conceivable because as shown by Table 1, this 

stimulating effect not only prompts both retailers’ large inventories but also allows 

cheaper wholesale prices and higher retail prices. Table 1 further identifies our 

previous finding of the price and the inventory competitions, showing that 1p
and 1q

positively correlate with 2p
and 2q

, respectively, in all cases. 

  According to Propositions 10 and 11, the Pareto-improved conditions are as follows: 

1b =8.851, 2b =4.788, 1w  13.685, 2w 12.622 and 1 276.909 151.531 2523.73w w  ; 

thus, the right-hand-side triangle in Fig 1 is for negotiating the wholesale prices. 

Table 2 thus assumes 1w =13.00 and 2w =12.00; clearly, chain coordination and a win-

win situation are verified. Additionally, retailer i ’s, the manufacturer’s and the chain’s 

profit increments are 27.57%, 32.91%, 27.36% and 28.41%, respectively. This is in 

accordance with our previous analysis that retailer 2 profits more from the leaking 

effect. Thus, in this case, retailer 1 could ask the manufacturer for a cheaper 1w , and 

the manufacturer could negotiate with retailer 2 a higher 2w . 
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Figs 2-3 show the impacts of demand-stimulating parameters 1 and 2  in a market 

without demand leakage. Fig 2 indicates that 1 increases the chain’s profit, from tp

=1002.37 or cp =1348.28 at 1 =0 to tp =1176.96 or cp =1583.26 at 1 =0.2. Our 

contract’s generated profit increment, however, remains almost unchanged, from I

%=34.51% to I %=34.52%. This is because the non-leaking effect keeps the 

stimulated demand 1 in a high profit margin submarket no matter the type of contract. 

Compared to 1 , Fig 3 shows that 2 contributes to more profit, from tp =1002.37 or 

cp =1348.28 at 2 =0 to tp =1204.14 or cp =1594.30 at 2 =0.2. A higher 2 , however, 

reduces our contract’s efficiency from I %=34.51% to I %=32.40%, which is 

attributed to its generated demand remaining in a low profit margin submarket. 

  Figs 4-5 show the impacts of demand-leaking parameters 1 and 2  in a market 

without demand stimulation. Fig 4 shows an increasing tp and a decreasing cp , from 

1002.37 and 1348.28 at 1 =0 to 1095.21 and 1319.08 at 1 =4, respectively, with a 

decreasing I % from 34.51 to 20.44. This is understandable because a large 1  allows 

more sales to leak to the low profit margin submarket. Fig 5 illustrates unchanged tp ,

cp and I % in response to a various 2 , which is obvious because demand leaks from 

retailer 1 to retailer 2. 

 

CONCLUSION 

 

This study investigated a decentralized supply chain in which a manufacturer supplies 

an item to two retailers who compete with each other in a stochastic demand market, 

considering the effects of price sensitivity, demand stimulation and demand leakage. 

The manufacturer offers contractual terms, including cheaper wholesale prices and 

buyback prices, to operate the chain as a centralized supply chain. 
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During the course of our ( , )w b contract, the following contributions and managerial 

insights are concluded. 

In a decentralized supply chain with a price-only contract: 

(1) there is a conflict of interests between the manufacturer and each retailer; 

(2) there are price and inventory competitions between the two retailers, which impair 

both retailers’ profits and increase the risk of overstock; 

(3) a double marginalization thus occurs in the aftermath of the conflicts and the two 

competitions. 

In a decentralized supply chain with our ( , )w b contract: 

(1) each wholesale price is negotiated by the manufacturer and each retailer according 

to Proposition 11, but the manufacturer determines each buyback price according 

to Proposition 10; 

(2) the manufacturer prefers a market without demand leakage, as it yields more profit 

as a whole; 

(3) if demand leaks from retailer 1 to retailer 2, retailer 1 should ask the manufacturer 

for a cheaper wholesale price, and the manufacture could negotiate a higher 

wholesale price with retailer 2; 

(4) all chain members benefit from the effect of demand stimulation; 

(5) all of the examples conducted confirm our contract’s excellent profit efficiency by 

at least 20.44%. 

  In future studies, our Stackelberg game could consider the manufacturer as a 

follower and the two retailers as two leaders in a supply chain, such as a smartphone 

maker and two telecommunication providers. In such a case, aside from the 

negotiations between the manufacturer and each retailer, the two retailers (leaders) 

might have two options to play the game: competing with each other without 

coordinating the chain or cooperating in the chain as a centralized supply chain; 

whichever game is used, it will be interesting and challenging for our further 

explorations. 
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Table 1 Optimal values comparisons between the decentralized and centralized supply chains 
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Table 2 Comparisons between the price-only and our ( , )w b  contracts at 1 2 1 20.2, 0.3, 3, 5        
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    Fig 1 Graphics of Pareto-improved conditions 
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         Fig 4 1 2 2 10, 0, 0, 0 4         step 1 

          

 
         Fig 5 1 2 1 20, 0, 0, 0 4         step 1 
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Proof of Proposition 1 

According to Eq. (1), we obtain 1
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, and this proves the negative-definite H , that is, 

[ ( , )]i i iE p z  is concave in ip and iz . 

 

Proof of Proposition 2 

 

If we regard ip = ( )i ip z  in Eq. (3) and take the derivative w.r.t iz , it yields 
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we complete the proof of positive correlation between the optimal ip and iz if they exist. 

 

Proof of Proposition 3 
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Therefore, the sequence (
( )k

ip ,
( )k

iz ) simultaneously converges to the solution of Eqs. (3) and 

(4), which is also unique due to the concave [ ( , )]i i iE p z .  

 

Proof of Proposition 4 

 

We regard ip = ( )ip w and iz = ( )iz w in Eqs. (3)-(4) and take the derivative w.r.t w , yielding 

the following equations. 
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implies that the optimal ip increases but iz decreases in w . Further, if we regard iq = ( )iq w  in 

Eq. (5) and then take the derivative w.r.t w , we obtain that 
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i

l
q w l p f z F z






 
  

 
<0, proving the optimal iq decreases in w . 

 

Proof of Proposition 5 

 

For 1,2,i  3j i  , we regard ( )i i jp p p and ( )i i jz z p in Eq. (3) and take the derivative 

w.r.t jp , yielding  

' ' ' '1 121
( ) ( ) ( ) ( ) ( ) 0

1 1 1 1

i i
i j i j i j i i i j

i i i i

l ll
p p z p p p F z z p

 

   

   
    

   
        (A2)  

where 2l =
( , )i i j

j

L p p

p




=

1 1 2

2 1 2

p p

p p









= 1l . Substitute 

' ' '( ) ( ) ( )i j i i i jz p z p p p =

'1 (1 ) ( )
( )

(1 ) ( )

i i i
i j

i i i i

F z
p p

p f z





 


 into (A2); we obtain 

' ( )i jp p 
A

B
>0, where 2 ( )

0
1

i i i

i

l p f z
A


 


and 

2

12( ) ( ) 1
( ) 0

1 1

i i i i
i i

i i

l p f z
B F z



 

 
    

  
. Once 

' ( )i jp p >0 is obtained, 

' ' ' '( ) ( ) ( ) ( )i j i i i j j jz z z p p p p z >0 and 
' ' ' '( ) ( ) ( ) ( )i j i i i j j jq q q z z z z q >0 are accordingly obtained, 

and this proves the positive correlation among both retailers’ optimal values. 
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Proof of Proposition 6 

 

We use the scheme in Proposition 3 to help prove Proposition 6 as follows. First, set 2p c  

Step 1: Use Steps 1-3 in Proposition 3 to obtain a convergent 1 1( , )p z  

Step 2: Use this convergent 1 1( , )p z and Steps 1-3 in Proposition 3 to obtain a convergent 

2 2( , )p z  

Step 3: Use this convergent 2 2( , )p z and go to Step 1 

Then, according to Propositions 2 and 5, both sequences 1 1( , )p z and 2 2( , )p z are increasing 

and bounded above, which thus simultaneously converge to solutions that satisfy both 

retailers’ optimal necessary conditions. 

 

Proof of Proposition 7 

 

The manufacturer maximizes his expected profit [ ( )]E w = 1 2( )( )w c q q  subject to both 

retailers’ optimal necessary conditions in Eqs. (3)-(5), 1,2,i  3j i  . First, 
'[ ( )]E w =

 ' '

1 2 1 2( ) ( ) ( ) ( ) ( )q w q w w c q w q w    . For any w c , if 1w w , because 
' ( )iq w <0, we have 

'

1[ ( )]E w 
'[ ( )]E w <    1 1 1 2 1 2( ) ( ) ( ) ( )q w q w q w q w   

    ' ' ' '

1 1 1 2 1 2( ) ( ) ( ) ( ) ( )w c q w q w q w q w    . Thus, let 1w w ,
'

1[ ( )]E w 
'[ ( )]E w <0 holds 

and this implies 
''[ ( )]E w <0, the concave [ ( )]E w  in w . 

To prove the unique optimal w , we need lim ( )i
w c

q w


= ( )iq c >0 because it represents the 

amount of order when the manufacturer himself sells the item, and lim ( )i
w

q w


=0 representing 

zero inventory because 
' ( )iq w <0. Thus, 'lim [ ( )]

w c
E w


= 1( )q c + 2 ( )q c >0 and 'lim [ ( )]

w
E w


<0 

are obtained. Moreover, because 
'[ ( )]E w decreases in w , there exists only one w c such 

that 
'[ ( )]E w =0, and this completes the proof. 

 

Proof of Proposition 8  

 

To prove [ ( , )]cE p z , where p 1 2( , )p p  and z 1 2( , )z z , is concave, we first fix 2p  and 

prove [ ( , )]cE p z is concave in 1p , 1z and 2z as follows. Thus, from Eq. (6), we have 

1 1 2
1 1 1 1 2

1 1 2

[ ( , )]
( ) ( ) ( )

1 1

c l lE p z
q p c z p c

p



 

 
     

  
 

1
1 1 1

1 1

[ ( , )]
( )

1

c p cE p z
p F z

z






 

 
 

2
2 2 2

2 2

[ ( , )]
( )

1

c p cE p z
p F z

z






 

 
 

2

1 1

2

1 1

2( )[ ( , )]

1

c lE p z

p





 


 
,  

2

1 1 12

1

[ ( , )]
( )

cE p z
p f z

z


 


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2

2 2 22

2

[ ( , )]
( )

cE p z
p f z

z


 


,   

2

1 1

1 1 1

[ ( , )] 1
( )

1

cE p z
F z

p z






 

  
 

2

1 2

[ ( , )]
0

cE p z

p z




 
 ,          

2

1 2

[ ( , )]
0

cE p z

z z




 
 

The corresponding Hessian matrix is 

  

1 1
1 1

1 1

1 1 1 1 1

1

2 2 2

2( ) 1
( ) 0

1 1

1
( ) ( ) 0

1

0 0 ( )

l
F z

H F z p f z

p f z



 



  
  

 
 

   
 
 
 
 

 

The first-order minor 1 1
1

1

2( )

1

l
H





 



<0 

The second-order minor 

1 1
1 1

1 1

2

1 1 1 1 1

1

2( ) 1
( )

1 1

1
( ) ( )

1

l
F z

H

F z p f z



 



 


 


 


>0 

The third-order minor 

1 1
1 1

1 1

3 1 1 1 1 1

1

2 2 2

2( ) 1
( ) 0

1 1

1
( ) ( ) 0

1

0 0 ( )

l
F z

H F z p f z

p f z



 



 


 

  




 

                      =

1 1
1 1

1 1

2 2 2

1 1 1 1 1

1

2( ) 1
( )

1 1
( )

1
( ) ( )

1

l
F z

p f z

F z p f z



 



 


 


 


<0 

Thus, H is negative-definite, proving the concave [ ( , )]cE p z  in 1p , 1z and 2z . Likewise, the 

concave [ ( , )]cE p z in 2p , 2z and 1z for a fixed 1p can be drawn. To conclude the concave

[ ( , )]cE p z in 1p , 1z , 2p and 2z , we next consider the optimal necessary condition of ip , iz and

jz  for a fixed jp , 1,2,i  3j i  as follows. 

1 2( ) ( ) ( ) 0
1 1

i
i i i i j

i j

l l
q p c z p c



 

 
     

 
                         (A3) 

  ( ) 0
1

i
i i i

i

p c
p F z




 


                                               (A4) 

  ( ) 0
1

j

j j j

j

p c
p F z




 


                                              (A5) 
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According to (A3)-(A5), we will prove that ip , iz and jz all increase in jp . First, take the 

derivative w.r.t jp in (A5), yielding 
' 1 1
( ) ( )

( ) 1
j j j j

j j j j

z p F z
p f z 

 
    

>0. Second, taking 

the derivative w.r.t jp in (A3) and (A4), respectively, it yields 

' '1 2 2

' '

2( ) 1
( ) ( ) ( )

1 1 1 1

1
( ) ( ) ( ) ( ) 0

1

i
i j i i i j

i i i j

i i i j i i i i j

i

l l l
p p F z z p

F z p p p f z z p



   



     
     

    


 
     

 

Let =

12( ) 1
( )

1 1

1
( ) ( )

1

i
i i

i i

i i i i

i

l
F z

F z p f z



 



 


 

 


, 1 =

2 2 1
( )

1 1 1

0 ( )

i i

i j i

i i

l l
F z

p f z

  

 
 

  



 and  

2 =

1 2 2
2( )

1 1 1

1
( ) 0

1

i

i i j

i i

i

l l l

F z



  



   


  




. Obviously, >0, 1 >0 and 2 >0; thus, ' 1( ) 0i jp p


 


 

and ' 2( ) 0i jz p


 


, and we prove that ip , iz and jz all increase in jp . Knowing the increases 

of ip , iz and jz in jp , 1,2,i  3j i  , similar to Proposition 6, we construct two sequences (

1p , 1z , 2z ) and ( 2p , 2z , 1z ), respectively, as follows. Set 2p = c  

Step 1: Solve (A3)-(A5) to obtain ( 1p , 1z , 2z ) 

Step 2: Use this obtained 1p to solve (A3)-(A5) to obtain ( 2p , 2z , 1z ) 

Step 3: Use this obtained 2p , and repeat Steps 1-3 

Therefore, both ( 1p , 1z , 2z ) and ( 2p , 2z , 1z ) are increasing and will simultaneously converge 

to the solution of (A3)-(A5) for 1,2,i  3j i  . Thus, the uniqueness of optimal 1p , 1z , 2p

and 2z in the centralized supply chain within the range of i
i

i

p



 is proven, as is the concave

[ ( , )]cE p z in 1p , 1z , 2p and 2z . 

 

Proof of Proposition 9 

 

According to Eq. (7), [ ( )] ( ) ( ) ( )b c

i i i i i i i i iE p p w q p b z      where
iz satisfies 

(1 ) ( , )c

i i i i i i i j iq p L p p z       . Thus,  

'

1[ ( )] ( ) ( ) ( )( )b c

i i i i i i i i i iE p q z p b F z l       and 

'' 2

1 1[ ( )] 2 ( )( ) ( ) ( )( )b

i i i i i i i i i iE p F z l p b f z l        <0, which proves the concave

[ ( )]b

i iE p in ip . To prove the unique solution 
'[ ( )]b

i iE p =0, note that 
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(1 ) ( , )c

i i i i i i i j iq p L p p z        implies (1 ) c

i i i i j jz q p      <
c

iq as 0ip  , and 

0
( ) ( ) ( )

iz

i i i i i i iz z f d     <
0

( )
iz

i i i iz f d  <
iz <

c

iq  as 0ip  ; thus, 

 '

1
0 0

lim [ ( )] lim ( ) ( ) ( )( )
i i

b c

i i i i i i i i i i
p p

E p q z p b F z l 
  

     >0.  Next, for a fixed
c

iq , 

ip  implies
iz  ; thus, ( )i iz  , ( ) 1i iF z  and 'lim [ ( )]

i

b

i i
p

E p


  . The unique 

solution of '[ ( )]b

i iE p =0 is then proven as the consequence of ''[ ( )]b

i iE p <0. 

 

Proof of Proposition 10 

 

Each retailer’s optimal ip and iz , 1, 2i  , in our contract are obtained according to Eqs. (8) and 

(9); thus, if our contract coordinates the chain, the manufacturer must set a buyback price ib

such that each retailer’s optimal ip and iz are exactly the same as
c

ip and
c

iz in the centralized 

supply chain, respectively. Therefore, substituting ip =
c

ip and iz =
c

iz in Eq. (8) yields

1

( )

( ) ( )

c c
c i i i

i i c

i i i

q z
b p

l F z


 


. 

 

Proof of Proposition 11 

 

It is easily obtained by our Pareto-improved conditions [ ( )]b

i iE w > i

and [ ( )]b

mE w > m


,

1, 2i  . 

 


