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ABSTRACT 

 

Membrane shell theories are simple and widely used but also care must be taken to prevent 

secondary bending moments due to the unbalanced arrangement of laminates of anisotropic 

materials. At times, bending theory may have to be adopted and the current design codes, such as 

ASME, API and ACI must be reviewed for the case of anisotropic materials.  The stresses and 

strains can be significantly different between the pure membrane and bending theories. This 

paper derives a membrane type shell theory of hybrid anisotropic materials, governing 

differential equations together with the procedures to locate the mechanical neutral axis. The 

theory is derived by first considering generalized stress strain relationship of a three dimensional 

anisotropic body which is subjected to 21compliance matrix and then non-dimensionalizing each 

variable with asymptotically expansion.  After applying to the equilibrium and stress-

displacement equations, we are allowed to proceed asymptotic integration to reach the first 

approximation theory.  Also possible secondary moments due to the unbalanced built up of 

lamination are quantifiably expressed.  The theory is different from the so called pure membrane 

or the semi-membrane analysis. 

 

Key Words:  Hybrid anisotropic materials; Asymptotic integration; Length scales; Membrane 

Stresses; Secondary Bending moments. 
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INTRODUCTION 

 

Shell theories and its design and manufacturing technology are becoming more important 

recently as the outer space exploration being more active.  It ranges from deep water submarines, 

space vehicles, to the dome type human residences in the Moon or Mars. The membrane theory 

of shell is simple and been existing for generations since Trusdell and Goldenveiser have 

theoretically formulated as shown in the References (7) and (8).  

 

The mechanics of composites are complicated compared to the ordinary conventional materials 

such as steel and other metallic brands but composites possess such characteristics as high 

strength/density and modulus/density ratios, which will allow flight vehicles more efficient and 

increased distance. The filaments embedded in the matrix materials of composites give additional   

stiffness and tensile strength.  They can be arranged arbitrarily so as to make a structure more 

resistant to loadings. As the mechanical properties of composites vary depending on the direction 

of the fiber arrangement, it is necessary to analyze them by use of an anisotropic theory. Also the 

current design codes including ASME, API and ACI, References (15) to (18), are all based on 

membrane theory for isotropic materials.  
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Pressure vessels of composite materials are, in general, constructed of thin layers of different 

thickness with different material properties. The properties of anisotropic materials are 

represented by different elastic coefficients and different cross-ply angles. The cross-ply angle, , 

is the angle between major elastic axis of the material and reference axis ( Figure 1 and 2). The 

variation in properties in the direction of the thickness implies non-homogeneity of the material 

and composite structures must thus be analyzed according to theories which allow for non-

homogeneous anisotropic material behavior. Our task is to formulate a theory for a shell of 

composite materials which are non-homogeneous and anisotropic materials. 

 

According to the exact three-dimensional theory of elasticity, a shell element is considered as a 

volume element. All possible stresses and strains are assumed to exist and no simplifying 

assumptions are allowed in the formulation of the theory.  We therefore allow for six stress 

components, six strain components and three displacements as indicated in the following 

equation: 

 ij ij l klkC   , 1, 2,3i j   , 1,2k l     (1) 

 

w h e r e  ij   and kl    are stress and strain tensors respectively and ijklC  are elastic moduli. 

There are thus a total of fifteen unknowns to   solve for in a   three dimensional elasticity problem. 

On the other h a n d ,  three equilibrium equations and six strain displacement equations can be 

obtained for a     volume element and six generalized Hook's law equations can be used.  A total of 

fifteen equations can thus be formulated   and it is basically possible to set up a solution for a    three-

dimensional elasticity problem.  It is however very complicated to obtain    a    unique solution 

which satisfies both the above fifteen equations and the associated   boundary conditions. This led 

to the development of various theories for structures of engineering interest.  A detailed 

description of classical shell theory can be found in various references [1-12].  

 

In the first part of this article, the asymptotic expansion and integration   method is used to reduce 

the exact three-dimensional elasticity theory for a non-homogeneous, anisotropic cylindrical shell 

to approximate theories.  The analysis is made such that it is   valid for materials which are non-

homogeneous to the extent that their mechanical properties are allowed to vary with the thickness 

coordinate.  The derivation of the theories is accomplished by first introducing the shell 

dimensions and as yet unspecified characteristic length scales via changes in the independent 

variables. Next, the dimensionless stresses and displacements are expanded asymptotically by 

using the thinness of the shell as the expansion parameter. A choice of characteristic length scales 

is then made and corresponding to different combination of these length scales, different sequences 

of systems of differential equations are obtained. Subsequent integration over the thickness and 

satisfaction of the boundary conditions yields the desired equations governing the formulation of 

the first approximation stress states of non-homogeneous anisotropic cylindrical shell. 

 

Formulation of Cylindrical Shell theory of Anisotropic Materials 

 

Consider a non-homogeneous, anisotropic volume element of a cylindrical body with longitudinal,   

circumferential (angular) and radial coordinates being noted as z ,  , r ,  respectively  and 

subjected to all  possible  stresses and strains ( Figure 1).  The cylinder occupies the space between 
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a r a h    and the edges are located at 0z   and z L . Here, a      is the inner radius, h  the 

thickness   and   L   the length. 

 

Assuming that the deformations are sufficiently small so that linear elasticity theory is valid, the 

following equations govern the problem: 

 

    , , , 0rz r z z zr r        

              , , , 0r r z z zr r                                                                                                                                      

   , , , 0r r r rz zr r               (2) 

 

 

 , 11 12 13 14 15 16z z z r r rz zu S S S S S S               

  , 12 22 26

1
r z zu u S S S

r
            

 , 13 36r z z zu S S             (3) 

 , 14 16

1 1
r z z zu u u S S

r r
          

 , , 15 36z r r z z zu u S S       

 , , 16 66

1
z z z zu u S S

r
         

 

In the above Equations (2) are equilibrium equations and (3) stress-displacement relations. In 

that ru , u , zu  are the displacement components in the radial, circumferential and longitudinal 

directions, respectively, r ,  , z  the normal stress components in the same directions and 

z , rz , r   are the shear stresses on the  - z  face, r - z  face, r -  face respectively (Figure 1).  

A comma indicates partial differentiation with respect to the indicated coordinates. The ijS ’ s 

 , 1,2, ,6i j    in the equation (3) are the components of compliance matrix and represent 

the directional properties of the material. Complete anisotropy of the material is allowed for and 

there are thus 21 independent material constants. We are not allowed to illuminate any of those 

components since the material properties are depending on the manufactures set up and different 

gravity environment in case of aerospace vehicles. Also the compliance matrix is symmetric, 

ij jiS S , and the components can be expressed in terms of engineering constants as follows: 

 

  
1

ii

i

S
E

 ,  1,3i   

  
ij

ij

i

S
E


 , ( 1, 2i  , 2,3j  , i j  

  44

23

1
S

G
          (4) 
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  55

13

1
S

G
  

   66

12

1
S

G
  

 

In equation (4) the Ei ’ s are the Young’s moduli in tension along the i – direction and עij and Gij 

are the Poisson’s ratio and shear moduli in the i-j face, respectively.   Equation (4) implies 

anisotropic property of the material only, material to be non-homogeneous, different properties 

of each layer of the shell, we will allow the material property variation in the radial direction as 

follows: 

    ij ijS S r                                                           (5)                                  

                                 

The above equation is unique and different from most of conventional theories, including 

Reddy’s, Reference (11), which input the engineering constants artificially from the beginning, 

while we take the existence and magnitude of components only by approximation theory of the 

asymptotic expansion. 

 

The principal material axes ( 'r , ' , 'z ) in general do not coincide with the body axes of the 

cylindrical shell ( r ,  , z ).   If the material properties '

ijS   with respect to material axes 

specified, then the properties with respect to the body axes are given by the following 

transformation equations: 

 

  ' 4 ' ' 2 2 ' 4

11 11 12 66 22cos 2 sin cos sinS S S S S         

            ' 2 ' 2

16 26cos sin sin 2S S    , 

  ' 4 ' ' 2 2 ' 4

22 11 12 66 22cos 2 sin cos cosS S S S S         

            ' 2 ' 2

16 26sin cos sin 2S S    ,            

  ' ' ' ' ' 2 2

12 12 11 22 12 662 sin cosS S S S S S         

         ' '1
26 162

sin 2 cos 2S S    ,               

    ' ' ' ' ' 2 2 ' '

66 66 11 22 12 66 26 164 2 sin cos 2 sin 2 cos2S S S S S S S S          , 

    ' 2 ' 2 ' ' ' 2 2 21
16 22 11 12 66 162

sin cos 2 cos 2 sin 2 cos cos 3sinS S S S S S      
 

      
 

      

   ' 2 2 2

26 sin 3cos sinS     , 

  ' 2 ' 2 ' '1
26 22 11 12 662

cos sin 2 cos 2 sin 2S S S S S   
 

    
 

         

     ' 2 2 2 ' 2 2 2

16 26sin 3cos sin cos cos 3sinS S         .            (6) 
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where   is the angle of anisotropic orientation between the 'z
 
and the original coordinate z  

axes.  For the case of an orthotropic material, where the major and minor elastic axes are 90 

Degree, the transformation equations (6) are reduced to equation (7): 

 

  
4 4

2 21

'

2 1 1 2

21 cos 1 sin
sin cos

E E G E E

 
 

 
    

 
, 

  
4 4

2 21

'

2 1 1 2

21 sin 1 cos
sin cos

E E G E E

 
 

 
    

 
, 

  
21 1

'

2 2

1 11 1 1
sin 2

G G E E G

 


  
    

 
        (7) 

  ' ' 1 1 1
1 1

1 1 2

1 11 1

4
E

E E E G

  


   
     

  
 

  
'

' ' 2
2 1 '

1

E

E
    

 

The invariants are expressed by 

 

             ' ' ' ' '

1 2 1 1 1 2 1 11 1 2 1 1 2E E E E E E        

 

         ' ' '

1 1 1 11 4 1 4G E G E      

 

The shell is subjected to a uniformly distributed tensile force then the boundary conditions are as 

follows: 

  0r r rz        r a    

   , , 0r r rzz          r a h                                  (8) 

 

We will find it convenient to work with stress resultants rather than the stresses themselves. 

These stress resultants which are forces and moments per unit length are obtained by integrating 

with respect to the thickness coordinate. They are: 

 

  1
a h

z z
a

r a d
N dr

a d


   
   
   

  
a h

a
N dr 



   

  
a h

z z
a

N dr 


   

  1
a h

z z
a

r a d
N dr

a d
 

   
   
       (9) 

   
a h

a
M a r a d dr 



    



European Journal of Engineering and Technology      Vol. 4 No. 5, 2016 
             ISSN 2056-5860          

 
Progressive Academic Publishing, UK Page 88  www.idpublications.org 

  
a h

z z
a

r a d
M a rdr

a d

   
   
  

   
a h

z z
a

M r a d dr 


    

  
a h

z z
a

r a d
M rdr

a d
 

   
   
  

 

In the equations (9) variable a denotes the inner radius of the cylindrical shell and d the distance 

from the inner surface to the reference surface where the stress resultants are defined.  Note that 

zN  and zN    and zM  and zM  respectively are different.  This is due to the fact that the terms 

of the order of thickness over radius are not neglected compare to one in the integral expressions. 

 

Formulation of a Boundary Layer Theory 

 

The procedure used to formulate the shell theory here is basically to reduce the three dimensional 

equations to two dimensional thin shell equations and we will use the asymptotic integration of 

the equations (2) and (3) describing the cylindrical shell. As a first step to integrating equations 

(2) and (3), we make them non-dimensionalized coordinates as follows: 

 

   X z L ,       Y r a h  ,                 

            (10) 

where  L   and   a   are quantities which are to be determined later. 

Next the compliance matrix, the stresses and deformations are non-dimensionalized by the use of 

a representative stress level σ, a representative material property S and the shell radius a, as 

follows:  

ijijS S S   

 z r   ,    , r r    

r r    , rz rz  , z z    

 r ru aS  ,   u aS   , z zu aS             (11)          

  

where the dimensionless displacements and stresses are functions of x , y  and   . These variables 

together with their derivatives with respect to x , y  and   are assumed to be of order unity. The 

parameters L   and   introduced in equation (10) are thus seen to be characteristic length scales 

for changes of the stresses and displacements in the axial and circumferential directions, 

respectively. 

 

It is convenient at this point to define what is here meant by the concept of relative order of 

magnitude.  Consider a small parameter    ,  is less than 1 . With respect to an arbitrary domain 

D  of the cylinder,  
1M  is said to be of order n  relative to a second quantity 2M  

 

2 1

nM M                                              (12)  
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if everywhere in D (with the possible exception of some isolated small regions) the relationship  

 

 2 1

n m M M    n m        (13) 

 

holds for  a suitably chosen value of m , 0 1m  . According to this definition, two quantities are of 

the same order if 0n   in the above, while a quantity is of order unity when 0n   and  

1 1M  .  Substitution of the dimensionless variables defined by (10) and (11) into the elasticity 

equations (2) and (3) yields the following dimensionless equations:   

 

Stress-displacement relationships are  

 

  
31 32 33 34 35 36,r y z r r rz zS t S t S t S t S t S t              

  
51 52 53 54 55 56, ,z y r x z r r rz z

a
S t S t S t S t S t S t

L
     

             
 

   , ,1r y

l l
y

a a
     

   
     
   

       

            (14) 

    41 42 43 44 45 46
1 z r r rz z

l
y S t S t S t S t S t S t

a
   

             
  

  
11 12 13 14 15 16,z r z r r rz z

L
S t S t S t S t S t S t

a
  

            
 

    21 22 23 24 25 26, r z r r rz z

a
l y S t S t S t S t S t S t

l
      

              
 

      61 62 63 64 65 66, ,z z z r r rz z

a a
l y l y S t S t S t S t S t S t

L l
       

                     
                           

 

Equilibrium equations are expressed as 

 

      ,,
1 , 1 0rz z z xy

a a
t y t y t

l L


 
  

   
          

   
 

     , ,,
1 1 0r r z xy

a a
t y t t y t

l L
    

 
  

   
           

   
   (15) 

     , ,,
1 1 0r r rz xy

a a
t y t y t t

l L
  

 
  

   
           

   
 

 

where    is the thin shell parameter defines as 

 

                  h a                                                      (16) 

 

The parameter   is representative of the thinness of the cylindrical shell.  
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                     is much less than 1        (17) 

 

                 The dimensionless coefficients ijS of the compliance matrix in general are not all 

of same order.  

We therefore assume that they can be expanded in terms of finite sum as: 

 

        2

0

n
N n

ij i ijn
S y S y 


                            (18) 

 

where  the 
   n

ijS y  are of order unity or vanish identically. Next, we assume that each 

displacement components, represented by the generic symbol 
 m

 , and each stress components 

represented by the generic symbol 
 m

 , can be expanded in terms of a power series in 1 2   

 

        2

0
, , ; , ,

M m m

m
y x y x     


        (19) 

 

        2

0
, , ; , ,

M m m

m
t y x t y x   


        (20) 

      

The 
 m

  
and  

 m
t  are of order unity. No convergence properties are assumed for series (19) only 

asymptotic validity for λ.  That is, if expansions (19) are terminated at some power of   1 2 , the 

error in using the expansions rather than the exact solutions tends to zero as    approaches zero. 

Length scale L   and    are as yet arbitrary.  Their choice, as will be seen in the subjects to 

follow, determines the type of shell theory to be identified.  

 

Last step in the procedure consists of substituting expansions of the series and one of assumed 

length scales into the dimensionless elasticity equations of stress-displacement and equilibrium 

given by equations (14) and (15).  Upon selecting terms of like powers in 1 2  
on both sides of 

each equations and requiring that the resulting equations be integrable with respect to the 

thickness coordinate and be capable be capable of identifying the relations for all stresses and 

displacement components, we will obtain systems of differential equations. The first system of 

equations of “thin shell” theory and we will call it the first approximation system. We can 

however obtain stresses and displacements of each layer of thickness coordinate, that can be an 

advantage of the procedure among others.  In the following section, the thin shell theories for 

different combinations of length scales can be derived. 

 

Formulation of Membrane Type Theory 

 

(Associated with characteristic length scales, a ) 

 

As we observed the shell geometry is an important factor for the formulation of theories. The 

basic geometry of cylindrical shell are the longitudinal length L , inside radius a , total wall 

thickness h  and the distance from Inner surface to a desired surface, d .  We are interested here 

in deriving the shell theory associated with the case where the axial and circumferential length 
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scales are both equal to the inner radius of the cylinder, a , as follows: 

 

   ,           L a l a         (21) 

 

The reason for taking the length scales a is the longest practical dimension of the shell and we 

are interested in developing membrane type theory which requires longer than the bending 

characteristic influential length according to the classical theory of isotropic materials, 

References (6) through (8) and (17) through (19). 

 

On substituting these length scales into the three-dimensional elasticity equations (12) and (13) 

and stress-displacement relations and equilibrium equations of (14) and (15), we obtain: 

 

If the asymptotic expansions (19) and (20) for the displacements and stresses are now substituted 

into equations (22) and (23), the following equations representing the first approximation theory 

of the problem result upon use of the procedure outlined in the last chapter.  Note that both sides 

1/2 of each equation are equated in like powers of   and the leading terms may not correspond 

to 0m   term.  
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r y

z y
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            (22) 
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   

   

 

   

  

   

   

  

  

(2) (0)

, 0r yt t 

    

            (23) 

 

The superscripts indicate the leading term in each of the expansions (18) and represent the 

relative  of magnitude of the displacements and stresses.  These orders of magnitude result from 

the intention to obtain a system of equations which is integrable with respect to the thickness 

coordinate y in a step-by-step manner and the following additional reasoning: 

a) The dominant stress state in thin shell theory is the in-plane stress state.  These stresses 

should be of the same order of magnitude. 

b) The order of the displacements is chosen so that the product of the in-plane strains and 

the elastic moduli is of the same order of magnitude as the in-plane stresses. 
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c) The choice for the transverse stresses arises from the fact that they should contribute 

terms of the same magnitude in the equilibrium.  Integration of the first three equations of (23) 

with respect to y yields 

 
(0) (0)

(0) (0)

(0) (0)

( , )

( , )

( , )

r r

z z

v v x

v v x

v v x 













       (24) 

 

where rv , zv   , v   are the displacements of the 0y   ( r a ) surface. 

 

The middle three equations of (23) can be solved for the in-plane stresses as follows: 

 
(0)

1

(0)

2

(0)
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z

z

t
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t






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   

   
   
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       (25) 

 

Here, C .  (i, j = 1, 2, 3) are the components of a symmetric matrix 

given by 
1

(0) (0) (0)

11 12 16

(0) (0) (0)

12 22 26

(0) (0) (0)

16 26 66

s s s

C s s s

s s s



 
 

  
 
 

     (26) 

 

and 1 , 2  , 12   are the in-plane strain components of the 0y   surface:  
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    
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       (27) 

 

On substituting the first approximation in-plane stress-strain relations (25) into the last three 

equations of (23) and integrating with respect to y, we obtain: 

 

13 , 23 , , 33 , ,

11 , 12 , , 13 , ,

12 , 22 , , 23 , ,

13 , 23 , ,

( , ) [ ( ) ( )]
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   (28) 

 

where rzt , rT  , rT  are the transverse stress components of the 0y   surface and 
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0

 

y

ij ijA C d          (29) 

 

In relations (28) and in what is to follow, the superscripts on the displacements have been 

dropped. Boundary conditions (8) are to be satisfied by each term of asymptotic expansions (18).  

This yields 

 
(2) (2) (2)

(2) (2) (2) *

0              ( 0)

0 ,        ( 0)

rz r r

rz r r

t t t y

t t t p y





   

   
     (30) 

 

Here, *p  is a dimensionless pressure defined by 

  
* / ( )p p          (31) 

  

Satisfaction of conditions (30) by (29) yields 

 

0rz r rT T T         (32) 

 

and the following three differential equations for displacements rV  , zV  and V  
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         (33) 

 

In the above equations 

 
(1)

ij ijA A       (34) 

 

To obtain the appropriate expressions for the stress resultants we first non-dimensionalize those 

defined by (9) as follows: 

 

   (35) 

 

where N and M are the generic symbol for the force and moment stress resultants, respectively. 

Assuming it to be possible, we now asymptotically expand each of the dimensionless stress 

resultants in a power series in 1/2, 
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where ( )mN  and ( )mM  are of the order unity.  

 

Pseudo-Membrane Phenomena  

 

We are now interested in a formulation of equations to be able to obtain all the stress resultants 

due to membrane and bending actions. 

On substitution (35), (36) and the results for in-plane stresses (24) into relations (9) and equating 

terms of like powers in 1/2 on each side of the equations, we obtain the following expressions for 

the first approximation stress resultants: 
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       (37) 

 

where the superscript zero have been omitted and B. is defined as follows: 

 

0

( )   ,      (1)

y

ij ij ij ijB C d B B        (38) 

 

and submatrices A    and B    are given by 
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 (39) 

 

Note that /d a  can be written as 

 

         / ( / )d a d h          (40) 

 

From the results obtained above, we characterize the theory as follows: 

a) The approach that this research took, the asymptotic integration, for deriving shell 

equations is capable of obtaining all stress components, including the transverse components.  

b) The first three equations of (22) result from the relations for the transverse strains.  The 

variation with respect to y  is zero as shown in the displacements (23) which are independent of 

y .  The strain components of any point y off the 0y   surface are thus equal to those of the 

0y   surface, similar to classical membrane theory.  

c) The stress components vary with y because as the ijC , and the ijA . are functions of y.  

d) Equations (37) show that moment stress resultants are produced due to the non-

homogeneity of the material.  

 

For an isotropic and homogeneous material, the ijC  are constants and d/h = 1/2.   This yields 

 

1 1

2 2
ij ij ijB C A        (41) 

 

On substituting this result into relations (38) it is seen that submatrix B  is equal to zero and that 

relations (37) become those of the classical membrane theory of shell (zero moment resultants). 

In case of hybrid anisotropic materials, it is very rare to satisfy all the components of the 

submatrix [ ]B  to be equal to zero at the same time.  Another way of observation, it is 
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unavoidable to associate with some bending moments in addition to pure membrane forces for 

laminated anisotropic shell walls. Therefore, the analysis is named pseudo-membrane theory.  It 

is different from the long effective length of Vlasov's semi-membrane theory nor the short 

effective length of Donnell’s theory. 

 

Application 

  

To demonstrate the validity of the theory developed here, we will choose a problem of a laminated 

circular cylindrical shell under internal pressure and edge loadings. The shell is assumed to build 

with boron/epoxy composite layers. Each layer is taken to be taken to be homogeneous but 

anisotropic with an arbitrary orientation of the elastic axes. We need not consider the restriction of 

the symmetry of the layering due to the non-homogeneity   considered in the original development 

of the theory expressed by equation (5). Thus each layer can possess a different thickness. 

 

We assume here that the contact between layers is such that the strains are continuous function in 

thickness coordinate.  As the 
ijC  are piecewise continuous functions, the in-plane stresses are 

also continuous.  We would expect them to be discontinuous at the juncture of layers of dissimilar 

materials. The transverse stresses are continuous functions of the thickness coordinate. 

 

Although as mentioned above the theory developed can take unlimited hybrid random layers but 

for an example, a four layer symmetric angle ply configuration. For this configuration the angle of 

elastic axes   is oriented at    ,  ,  ,   w I t h the shell axis and the layers are of equal 

thickness. 

 

Let the shell be subjected to an internal pressure p , an axial force per unit circumferential length 

N . The axial force is taken to be applied at r a H   such that a moment ( )N H d  is produced 

about the reference surface r a d  .  We introduce dimensionless external force and moments 

as follows: 
   

 
2 2

2 3

( )

2 (1 / )

N
N

N H d
M

T
T

d a

  

  
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
 




 


  

       (42)

 

To demonstrate the validity of the derived theory, we have simplified loading and boundary 

conditions as follows:   
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        (43)        

      

Here, l   is the dimensionless length of the cylindrical shell. 

 

In the theories developed in the previous chapters, the distance d at which the stress resultants were 

defined was left arbitrary. We now choose it to be such that there exists no coupling between zN   

and 1K
 
and zM  and  ijC .       

As the loading applied at the end of the shell is axi-symmetric, all the stresses and strains are also 

taken to be axi-symmetric.   We thus can set all the derivatives in the expressions for the stresses 

and strains and in the equations for the displacements equal to zero.  

 

Numerical calculations are now carried out for a shell of wall of various hybrid laminae. 

Each of the layers is taken to be equal thickness and thus the dimensionless distances from the 

bottom of the first layer are given by 

 

   1 2 3 4 50,  0.25,  0.5,  0.75,  1.0S S S S S      

 

each layer of the symmetric angle ply configuration (elastic symmetry axes y are oriented at  (  , 

 ,  ,  ) is taken to be orthotropic with engineering elastic coefficients representing those 

for a boron/epoxy material system, 

 
5

1

5

2

5

12

2.413 10  MPa

1.0 10  MPa

5.17 10  MPa

E

E

G

 

 

 

 

 

Here direction 1 signifies the direction parallel to the fibers while 2 is the transverse direction. 

Angles chosen were  =0 ,  15,                    30, 45  and  60. Use of the transformation equations (2.6) then yields 

the mechanical properties for the different symmetric angle ply configurations. 

We next apply the following edge loads: N p  and take /p  , (3 / 4)H h  and  

the reference surface we take / 1/ 2d h 

Shown in Figs. 4 to Fig. 6   is the variation of the dimensionless radial displacement with the actual 

distance along the axis for the different theories. The reference surface for the chosen 

configuration is given by / 1/ 2d h  .  The integration constants determined from the edge 

conditions. 

 

It is also seen that wide variations in the magnitude of radial displacement take place with change 

in the cross-ply angle. The maximum displacement occurs at  = 30 degree while the minimum 

displacement is at  = 60 degree. Because we have simplified all the conditions to be purely 

membrane status, membrane stress as well as displacements cannot accommodate with the edge 
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conditions as shown in the Figure 5.  Also shown in the Figure 6 is the patterns of near edge zone 

to compare the pure membrane theory against bending theory, which are close to Donnel’s 

theory for the case of isotropic material. The results of bending theory were adopted from the 

Reference (12). 

 

In each case, the displacements increase with increase in   up to  =30 degree and thereafter 

decrease.   

 

CONCLUSION 
 

In the present analysis, first            approximation shell theories are derived by use of the method of 

asymptotic integration of the exact three-dimensional elasticity equations for a non-homogeneous 

anisotropic circular cylindrical shell.  The analysis is valid for materials which are non-

homogeneous to the extent that their properties are allowed to vary with the thickness coordinate 

(r). 

 

The first approximation theory derived in this analysis represent the simplest possible shell 

theories for the corresponding length scales considered. Although twenty one elastic coefficients 

are present in the original formulation of the problem,         only six are appear in the first 

approximation theories. It was seen that use of the asymptotic method employed in the research 

also yields expressions f o r all stress components, including t h e transverse ones. Unlike the pure 

membrane theory of isotropic materials, secondary bending moments can be computed in 

association of material characteristics of lamination.  

 

The fact that these expressions can be determined is very useful when discussing the possible failure 

of composite shells and also for the discrepancy between theoretical membrane theory and 

experimental results. 

 

For design of space shuttles and other vehicles, a shell structure must be carefully designed for 

all possible loading conditions, extremely high negative and positive pressure and temperature, 

which demands further accurate shell theories. In case the membrane theory seems to be 

justified, the effect of all possible secondary bending moments must carefully be examined as 

shown in the equation (37) through (41) of this analysis. It is more realistic for shells of hybrid 

anisotropic materials of high strength. 
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Figure 1, Examples of Cylindrical Shells 
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Figure 2. Dimensions, Deformations and Stresses of the Cylindrical Shell 
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Figure 3, Details of the Coordinate System 
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Figure 4, A Laminated Cylindrical Shell, Material Orientation  γ 
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Figure 5, Fiber Orientations 
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Figure 6, Non-dimensionalized Radial Displacement of Pure Membrane Theory 
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Figure 7, Comparison of Radial Displacements of the Bending and Pure Membrane Theories. 

 

 

 


