PLURIHARMONICITY IN THE SHEAF OF COMPLEX LINES

Nilufar Kuronboevna Khaknazarova The Headscientific-methodical center under MHSSE THE REPUBLIC OF UZBEKISTAN

ABSTRACT

In this article, we prove an analog of Forelli's Theorem for pluriharmonic functions, Theorem 1. Let D be a complete circular domain in C^n and the function $U, D \rightarrow R$, defined in D, satisfies the following conditions:

- 1) U M- subharmonic somewhere, $U \in Msh\{0\}$
- 2) For each fixed $z \in D$ the function $U(\lambda z)$ is harmonic in the circle $\left\{ \lambda \in \mathbf{C}^n : \lambda z \in D \right\}$.

Then the function U is pluriharmonic in D.

Keywords: M – sub harmonic functions, plurisubharmonic functions, holomorphic functions, harmonic functions, entire circular domain.

INTRODUCTION

Let's begin with known definitions of circular domains.

Definition 1. Domain $D \in C^n$ is called entire circular if $\lambda z \in D$, for each $z \in D$ and $|\lambda| \leq 1$

The results of this paragraph are directly related to the following Forelli's theorem.

The theorem (Forelli). Let D be an entire circular domain in C^n . Let's suppose that the function $U, D \rightarrow \mathbf{R}$ has the following features:

1) U is infinitely continuously differentiable in the neighborhood of zero: $U \in C^{\infty} \{0\}$

2) For each fixed $z \in D$ the function $U(\lambda z)$ is harmonic in the circle $\{\lambda \in C : \lambda z \in D\}.$

Then, the function U is pluriharmonic in D.

The example K continuously differentiable function $U(z) = \frac{z_1^{k+1} \times \overline{z_z}}{|z|^2} U(0) = 0$ show that the gained result is given incorrectly if the condition I - infinite smoothness is

substituted with the existence of only a finite number of derivatives in the

neighborhood $0 \in \mathbb{C}^n$. We prove that the condition $U \in \mathbb{C}^{\infty} \{0\}$ may be replaced by the more convenient condition M – subharmonic in some neighborhood of zero.

Theorem 1. Let D be an entire circular domain in C^n and the function $U, D \rightarrow R$ given in D satisfies the following conditions:

3) U M-subharmonic somewhere, $U \in Msh\{0\}$

4) For each fixed $z \in D$ the function $U(\lambda z)$ is harmonic in the circle $\{\lambda \in \mathbb{C}^n : \lambda z \in D\}$

Then, the function U is pluriharmonic in D.

we

The proof of the Theorem I. From the conditions of Theorem and the formula of Puasson,

for each fixed number $|\lambda| \le 1$ and the point $z \in D$ we know $1^{2\pi}$

$$U(\lambda z) = \frac{1}{2\pi} \int_{0}^{\infty} U(\tau z) \operatorname{Re} \frac{\xi + \lambda}{\xi - \lambda} dt \text{ where } \tau = e^{it} \text{ . As in the theorem I, firstly, we}$$

look at the case when $U \in C^2(G)$. From the conditions of the theorem for each fixed $\lambda |\lambda| \leq 1$, in the neighborhood G, having derived both sides of the equation (I.2) on Z,

have
$$\Delta_z U(\lambda z) = \frac{1}{2\pi} \int_0^{2\pi} \Delta_z U(\xi, z) \operatorname{Re} \frac{\xi + \lambda}{\xi - \lambda} dt$$
, and when

Let's suppose 0 the function holomorphic according to λ in the circle $|\lambda| \leq 1$ and $\psi(0, z) = 0$ according to (I.3). Therefore, $\psi(\lambda z)$ equals 0 in fixed $z \in G$ or identically, or takes a neighborhood of zero in some neighborhood of zero. The latter cannot be done because $\operatorname{Re} \psi(\lambda z) \geq 0$. This implies that $\psi(\lambda z) = 0$ for any fixed λ , $|\lambda| \leq 1$ and $z \in G$. So $\Box_z U(\lambda z) = 0$ and, that is to say U began coordinates harmonically in the neighborhood. Consequently $U \in C^{\infty} \{0\}$ as a function and U will be pluraharmonic in D accoding to the formed theorem of Forelli.

According to the formula of Poisson and theorems of Fubini, we have

$$(U(\lambda z, \Delta \varphi)) = \int_{G} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \Delta_{z} U(\tau z) \operatorname{Re} \frac{\xi + \lambda}{\xi - \lambda} dt \right\} \Delta_{z} \varphi dV = \frac{1}{2\pi} \int_{0}^{2\pi} \left\{ \int_{G} U(\xi, z) \Delta_{z} \varphi dV \right\} \operatorname{Re} \frac{\xi + \lambda}{\xi - \lambda} dt \ge 0$$

$$\tau = e^{it}$$

, where

It is clear that the function
$$\psi(\lambda z) = \frac{1}{2\pi} \int_{0}^{2\pi} \left\{ \int_{G} U(\xi, z) \Delta_{z} \varphi dV \right\} \frac{\xi + \lambda}{\xi - \lambda} dt$$

Holomorphic to λ , the function $\Psi(\lambda z)$ is either identically equal to 0 or transfers the neighborhood of zero to some neighborhood of zero. The latter is impossible because of $\operatorname{Re} \psi(\lambda z) \geq 0$ which is in G. From it $\Psi(\lambda z) \equiv 0$ for each $|\lambda| < 1$ and $z \in G$.

Consequently $(U(l), \Delta_z \varphi) = 0$ for any non-negative in G function φ of the category C^{∞} . This means that U(z) is harmonic in G, and, partially U, infinitely smooth in the neighborhood of zero. This implies that U is pluraharmonic in D.

The theorem is proven.

The theorem 1 can be used to continue holomorphic function in the following pattern:

Corollary 1. Let the function $f_{\text{given in the entire circular domain}} D \subset C^n$ satisfies the following conditions:

1) Re $f_{M-\text{subharmonic in the neighborhood } G \ni 0$. 2) Stiction f/l $D \cap l$ d d d d d

2) Stiction $f/l_{is holomorphic in} D \cap l_{for each complex line} l \neq 0$. Then, $f_{is holomorphic according to the set of variables in <math>D$. In fact, according to Theorem 1. Re $f_{is pluraharmonicin} D$. We take the full sphere $B = B(o, r) \subset D_{and in it the function} F \in O(B)_{is}$ found which is $\operatorname{Re} F = \operatorname{Re} f_{.}$ Then the difference $\varphi(z) = F(z) - f(z)_{has}$ the following features: $\operatorname{Re} \varphi \equiv 0_{and} \operatorname{stiction} \varphi/l_{is}$ holomorphic in the neighborhood $l \cap B_{.}$ Consequently, $\varphi/l \equiv C(l)_{is}$ a constant depending perhaps on $l_{.}$ But $C(l) = \varphi(0) = F(0) - f(0) = \operatorname{const}_{from which} f = F - \operatorname{const}_{and} end$ is a holomorphic function in B . Using the theorem of Forelli, we obtain holomorphicity f in the neighborhood D. Corollary is proven.

REFERENCES

- 1. Мадрахимов Р. М. Некоторые критерии плюригармоничностиИзв. АН УзССР. Сер. Физ. –мат. наук. Ташкент, 1986. №3. С.28– 32.
- 2. Рудин У. Теория функций в единичном шаре из *Сⁿ*. –М.: Мир, 1984. 456
- 3. Б. В. Шабат Введение в комплексный анализ. Част 1, Москва, «Наука», 1985.
- 4. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1989.–624 с.
- 5. Форелли (Forelli Frank)
- 6. Pluriharmonciti in terms of harmonic slices, Math. Scand. 41, 358-364 (1977).