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ABSTRACT 

 

The article considers the method of constructing of predictive values of dynamic risk 

measures VaR  and CVaR  on the basis of an optimizational smoothing of autocorrelation 

function, proposed by the authors in the previous works. The method is based on the 

heteroscedastic time series model and is designed to predict the time series with long range 

dependence. For dispersion modeling the FIGARCH model is used, which is reduced to the 

AR model of the infinite order. In this paper, we study the feasibility and effectiveness of the 

proposed method for obtaining predicted values of dynamic risk measures VaR and CVaR for 

time series with different volatility. We consider tree time series of logarithmic return on a 

daily basis of the Nasdaq-100 index over the period 2005-2015: the original time series data, 

and two modified time series obtained from the original by deleting time periods with high 

volatility. So we have the opportunity to compare the forecasts built for data with similar 

statistical characteristics, but different volatility. The forecast values of risk measures are 

built in accordance with the procedure of direct multi-step prediction. Analysis of the 

predicted values is carried out using the Kupiec test, the Kristoffersen, the V-test and analysis 

of Probability of Exceedance values. The obtained predicted values and test results are shown 

in the figures and are displayed in tables. The analysis of the test results shows the 

effectiveness of this approach for obtaining risk measures VaR and CVaR prediction values 

for time series with long range dependence in a wide range of volatility. The proposed 

algorithm allowes to obtain the forecast that qualitatively repeats both the regular behavior 

and emissions of time series. 

 

Keywords: Dynamic risk measures VaR and CVaR, long range dependence, heteroscedastic 

model, prediction.  

 

INTRODUCTION  

 

VaR  and CVaR  are the risk measures that are most commonly used by various financial 

institutions to analyze and predict the stock risks. This may explain the great interest of 

experts to their evaluating and predicting. In the previous studies [3, 4] a classification 

scheme for the choice of a method for dynamic risk measures VaR  и CVaR  estimating is 

proposed. On the basis of this scheme an algorithm for constructing predictive values of risk 

measures based on the optimization procedure of the autocorrelation function (ACF) 

smoothing is developed [5]. Verification of the proposed algorithm has been carried out by 

comparing the results of applying of the method to the real time series of index of the Tokyo 

Stock Exchange and the artificially generated time series with known characteristics.  

 

The aim of this work is to demonstrate the capability and efficiency of the application of the 

developed technique to real time series with a wide range of volatility. As the data the time 

series of daily log return (2575 values) of the Nasdaq-100 Index (the NDX Index) for the 

period from 08.02.2005 to 11.02.2015 is considered. The index represents the dynamics of 
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shares of the largest and most actively traded companies outside the financial sector, that are 

in the list of Exchange Nasdaq Stock Market. For comparison, besides the time series 1NDX  

with high enough volatility, two another time series are used. The series 2NDX  (2275 values) 

is obtained from 1NDX  by removing the values for the time period of high volatility from 

13.05.2008 to 22.07.2009, and the series 3NDX  (1975 values) obtained from 2NDX  by 

removing the values for the volatility time period from 22.02.2011 to 01.05.2012. 

 

It should be emphasized that the algorithm is developed for time series with long range 

dependence. All considered time series, as it is shown below, satisfy this condition. 

 

Key Definitions  
 

Consider a non-stationary time series  ZtX t ,  with finite mean defined on the probability 

space ),,( tt  , where t  is the information set containing all available at the time t  

information about the time series. The series  2,tX t Z  (TSV) is considered to be 

stationary. 

The time series has the property of long range dependence [6] if there are 0 1   and 

0rc   such that: 

1)/()(lim 



 kck r
k

, ( ) ( , )t t kk Corr X X  , {0}k N  . (1) 

For a fixed confidence level   risk measures VaR  and CVaR  are defined as: 

  ( ) inft

t t hVaR t h x R X x       , ( ) [ ( )]
t

t t

t h t hCVaR t h E X X VaR t h       , 

where ][t
E  denotes the conditional expectation with respect to t  [7].  

As a model for the time series  ZtX t ,  a stochastic process of the form: 

tttttt ZX        (2) 

is considered, where t  and 
2

t  are the conditional expectation and variance, respectively, 

defined on the information space t , )1,0(}{ ~ t

iid

t FZ . 

Then the dynamic risk measures can be found by the formulas [8]: 
1( ) ( )t

t t t tVaR F VaR Z         , ( )t

t tCVaR CVaR Z     , (3) 

and, accordingly, the predicted values for the P -steps ahead are defined as: 

( )t P

t P t PVaR VaR Z  

   , ( )t p

t P t PCVaR CVaR Z  

   , (4) 

where Z  is a random variable with the same distribution as any random variable from { }tZ . 

Hereinafter it is assumed that the trend, that defines t , is missing (or it is removed from the 

data) [8]. 

 

METHODOLOGY  
 

To build a predictive model a standard procedure is used. The sample is divided into two 

parts - In Sample and Out of Sample [6, 8]. In this study, the size of In Sample and Out of 

Sample is equal and the time interval In Sample is preceded by Out of Sample. In Sample is 

used for the series research and for the model constructing. After that the P -steps ahead 

prediction is built and the results are compared with the real values obtained on Out of 

Sample. The considered procedure assumes the construction of only short-term predictions, 
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as it is based on an autoregressive time series model. In this paper we construct a 5-steps 

ahead prediction. To confirm the stability of the result the procedure (the window with the 

accumulation) is repeated many times. To build a prediction of risk measures for 1NDX  256, 

for 2NDX  226 and for 3NDX  196 windows are considered. To obtain the final prediction all 

5-steps ahead predictions are combined into one. The confidence level for all risk measures is 

0.9  . 

 

In accordance with the proposed methodology in the first stage the standard statistical 

analysis of the time series and their squares is performed. The analysis confirms that the 

considered series have different volatility: 
1

0.43NDX  , 
2

0.32NDX  , 
3

0.25NDX  . The 

values of the asymmetry coefficient (Skewness) and kurtosis (Kurtosis) for all-time series 

indicate that PDF have fat tails. 

 

In the second stage TSV are analyzed on the property of long range dependence. To estimate 

the Hurst parameter 5 standard methods are used - the method of absolute values of the 

aggregated series, the aggregated variance method, the method of residuals of regression, the 

periodogram method and the R/S method [1]. Table 1 shows minimum minH , maximum minH  

and average meanH  values for the windows obtained by each method. The results indicate that 

different methods determine the value of the parameter with a significant scatter. However, 

all methods confirm that all series have the property of long range dependence. The scatter in 

the values of the Hurst parameter makes inefficient the standard modeling methods [9]. 

 

In the third stage, in view of the long range dependence of the TSV, for modeling and 

predicting the model FIGARCH  is used, which is reduced to the model AR (∞) [10, 2]. 

Autoregression coefficients '
1( ,..., ,...)Na a  are determined by the least squares method that 

leads to the necessity of solving the infinite system of Yule-Walker equations: 

1

0








 i

j

jji
a  ,  ,...,0i .    (5) 

To estimate i  the regression equation for the ACF is used. The equation is based on the 

definition of the long range dependence (1): 
k

HkHHk   

2

22

1 )12()( , k iid  , 

Nkk 0 . The optimization procedure [1] allows to specify the estimate ˆ
optimH  (Table 1) 

and to correct the estimates )(k


. 

 

The values ˆ
optimH  show that the use of the optimization procedure gives much more stable 

value of the parameter. Thus, one of the main objectives of the developed technique - model 

is more stable - is achieved. So it is able to get more stable prediction. 
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Table 1. Hurst parameter values 

Method/ H  1NDX  2NDX  3NDX  

minH  maxH  meanH  minH  maxH  meanH  minH  maxH  meanH  

Abs.values 

of the 

aggregated 

series 

0.924 0.948 0.938 0,844 0.774 0.875 0.799 0.766 0.833 

Aggregated 

variance 

0.905 0.880 0.931 0.759 0.601 0.784 0.771 0.726 0.792 

Residuals of 

regresion 

0.937 0.827 1.008 0.741 0.538 0.802 0.701 0.648 0.758 

periodogram 1.038 1.012 1.068 0.800 0.723 0.885 0.854 0.801 0.915 

R/S 0.831 0.782 0.863 0.781 0.729 0.825 0.742 0.719 0.769 

optimization 0,775 0,772 0,779 0,763 0,726 0,783 0,732 0,726 0,755 

 

The reduced system of normal equations (5) with the coefficients )(k


 is solved . The 

Akaike information criterion [10] is used to determine the lag M  of the reduced 

autoregression model. As it is shown in [11], the solution of the reduced system converges to 

the exact solution. The variance ratio test [12] confirms the correctness of the constructed 

model for getting estimates t . The built model is used to obtain the predictive values of 

variations: 

2 2
1ˆ ˆ ˆ

M p

l p i l i
i p

a 


  


  , ,...1 Nl ., 1,...,p P   (6) 

In the fourth stage the obtained model estimates t  are used to find realizations of a random 

variable tZ : t t tZ X  . The variance ratio test shows that they are iid. The Jarque-Bera test 

[8] indicates that the PDF of the model residuals have relatively thick tails. In accordance 

with the classification scheme presented in [3], the following methods for finding the 

estimates  0.9(Z)VaR , 0.9(Z)CVaR  are chosen: the historical simulation method (estimate 

1hist ), the use of explicit formulas under the assumption of a normal distribution with the 

maximum likelihood estimates of the parameters (estimate 1pd ), the use of explicit formulas 

using the GEV  function with the maximum likelihood estimates of the parameters (estimate 

GEVq ), the Monte Carlo method for the obtained GPD  function (estimate GPDmc ), the 

empirical POT  method (estimate POTem ). Description of the methods can be found, for 

example, in [3]. 

 

Minimum, maximum and average values for the windows for 0.9(Z)VaR  are presented in 

Table 2 and for 0.9(Z)CVaR  in Table 3.  
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Table 2. Values of 0.9(Z)VaR  

Method/

0.9(Z)VaR  

1NDX  2NDX  3NDX  

min max
 

mean
 

min max
 

mean
 

min max
 

mean
 

1hist  1.657 1.627 1.743 1.603 1.541 1.754 1.546 1.522 1.613 

1pd  1.658 1.634 1.709 1.623 1.582 1.740 1.580 1.564 1.615 

GEVq  1.515 1.484 1.563 1.479 1.410 1.570 1.445 1.398 1.492 

GPDmc  1.570 1.543 1.616 1.545 1.410 1.647 1.497 1.475 1.552 

POTem  2.077 1.807 2.370 1.916 1.524 2.187 1.752 1.443 2.076 

 

Table 3. Values of 0.9(Z)CVaR   

Method/

0.9(Z)CVaR  

1NDX  2NDX  3NDX  

min max
 

mean
 

min max
 

mean
 

min max
 

mean
 

1hist  2.512 2.465 2.603 2.462 2.408 2.666 2.414 2.366 2.508 

1pd  2.267 2.238 2.233 2.217 2.162 2.373 2.381 2.138 2.205 

GEVq  2.503 2.447 2.611 1.479 1.410 1.570 2.381 2.318 2.470 

GPDmc  2.523 2.486 2.613 1.545 1.410 1.647 2.419 2.386 2.483 

POTem  2.942 2.634 3.246 1.916 1.524 2.187 2.621 2.280 3.000 

 

Using the obtained values of 0.9(Z)VaR  and 0.9(Z)CVaR  and (4) predictive estimates of 

0.9

t p

VaR


 and 0.9

t p

CVaR


, 1,...,5p   are built.  

Predicted values are compared with the estimates of risk measures obtained by the respective 

methods using real data from Out of Sample on the forecast horizon. Error characteristics are 

given in Table 4 (for 0.9

t p

VaR


 ) and in Table 5 (for 0.9

t p

CVaR


).  

Table 4. Results of analysis of prediction errors for 0.9

t p

VaR


 

Method/ 

quantity 
1NDX  2NDX  3NDX  

ME 
310

 

MAE 
310  

MSE 
510  

ME 
310  

MAE 
310  

MSE 
510  

ME 
310

 

MAE 
310  

MSE 
510  

1hist  -1.6 6.0 6 0.4 5.1 5 -0.3 3.6 2 

1pd  -3.0 6.7 7 0.1 5.2 5 -0.5 4.0 3 

GEVq  -3.1 6.3 6 -0.2 4.8 4 -0.8 3.8 2 

GPDmc  -1.7 5.7 5 -0.3 4.9 5 -0.5 3.8 3 

POTem  0.2 6.9 9 2.4 5.8 8 1.9 4.5 4 
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Table 5. Results of analysis of prediction errors for 0.9

t p

CVaR


 

Метод/

Оценк

а 

1NDX  2NDX  3NDX  

ME 
310  

MAE 
310  

MSE 
510  

ME 
310  

MAE 
310  

MSE 
510  

ME 
310

 

MAE 
310  

MSE 
510  

1hist  -4.5 10.1 16 0.3 7.9 13 -0.8 6.3 6.7 

1pd  -4.3 9.2 13 0.1 7.1 10 -0.8 5.6 5.2 

GEVq  -3.6 9.7 15 0.9 7.8 13 -

0.06 

5.9 6.3 

GPDmc
 

-4.3 10.0 16 0.6 7.9 13 -0.4 6.1 6.6 

POTem
 

-2.8 10.9 20 2.5 8.4 15 1.4 6.6 9.0 

 

As can be seen, the constructed forecasts are stable and reliable. Forecast quality tests show 

the correctness of assessments built by all methods, with some advantage of GPDmc  for 

1NDX , GEVq  for 2NDX  and 1hist  for 3NDX . This can be explained by the different 

volatility as well as the features of the distribution functions. 

 

Figure 1 shows the prediction of risk measures for 1NDX , where the estimates GPDmc  are 

used. Figure 2 shows the prediction of risk measures for 2NDX  with estimates GEVq  and 

Figure 3 demonstrates the prediction of risk measures for 3NDX  with estimates 1hist . 

 
Fig 1. Predictive estimates of risk measures for 1NDX   
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Fig 2. Predictive estimates of risk measures for 2NDX   

 
Fig 2. Predictive estimates of risk measures for 3NDX   

 

Analysis of the results leads to the conclusion that the values of risk measures qualitatively 

monitor the dynamics of the time series, the risk jumps repeat measures emissions with 

minimal delay. CVaR , as an integral characteristic, smoothes VaR  jumps. It should be noted 

that VaR  is not a convex function [8], and, as it is seen from Table 2, the increase of data 

volatility does not automatically result its growth. At the same time, CVaR  is a convex 

function and its values grow when data volatility increases. 

 

Values of Probability of Exceedance (POE) [13] are obtained to analyze the predicted values 

of dynamic VaR  (Table. 6). 
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Table. 6. Comparison of PoE for real and predicted values of 0.9

t

VaR   

Method/ 

Statistics 
1NDX  2NDX  3NDX  

real  pred  real  pred  real  pred  

1hist  0.061 0.091 0.087 0.096 0.079 0.094 

1pd  0.051 0.090 0.080 0.093 0.071 0.090 

GEVq  0.052 0.104 0.087 0.105 0.082 0.103 

GPDmc  0.059 0.099 0.089 0.101 0.080 0.100 

POTem  0.066 0.063 0.078 0.072 0.079 0.081 

 

The values real  are obtained by the model using real data. The proximity of the obtained 

values to the value 1 0.1   demonstrates the possibility to use the considered methods for 

the determination of the dynamic VaR .As expected, the worst result is obtained for 1NDX  

with high volatility. The values pred  are obtained using the predicted values and describe 

the dynamic behavior of VaR  more adequately. The method POTem  demonstrates the worst 

result that corresponds to the results shown in Table 4.  

 

To analyze the obtained predicted values of VaR  the quality tests are used. Table 7 shows the 

p-values of the statistics for the unconditional Kupiec test ( LRpof  ), Kristoffersen test for 

independence ( LRind  ) and the combined statistics LRcc  [14]. 

Table. 7. Results of the quality tests for the predicted values of 0.9

t

VaR   

Metho

d/р-

value 

1NDX  2NDX  3NDX  

LRpof  LRind  LRcc  LRpof  LRind  LRcc  LRpof

 

LRind

 

LRcc  

1hist  0.257 0.013 0.054 0.618 0.047 0.046 0.519 0.057 0.046 

1pd  0.119 0.035 0.045 0.423 0.024 0.056 0.279 0.032 0.055 

GEVq  0.643 0.051 0.071 0.555 0.061 0.144 0.750 0.054 0.053 

GPDmc
 

0.126 0.080 0.060 0.921 0.0159 0.062 1.000 0.066 0.062 

POTem
 

0.001 0.020 0.000 0.001 0.395 0.003 0.037 0.031 0.011 

Test result is positive if p-value is greater than the selected Value of Reliability equal 0.05. 

As can be seen, the method POTem  demonstrates the lowest quality. The estimates obtained 

with the method 1pd  also have not enough high quality that can be explained by the fat tails 

of the PDF. 

 

V-test with statistics 1V , 2V , V  [7,4] is used to analyze the quality of the predicted values of 

0.9

tCVaR  (Table 8). Estimates have good quality, if the statistics are close to 0. The results in 

the table show the methods are chosen correctly and forecasts have high quality.  
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Table. 8. Results of the V-test for the predicted values of 0.9

t

CVaR   

Method/

statistics 
1NDX  2NDX  3NDX  

1V

310

 

2V

310  

V

310  

1V

310  

2V

310  

V

310  

1V

310  

2V
310  

V

310  

1hist  0.04 -18.18 9.11 -0.24 -17.92 9.08 0.15 -16.61 8.38 

1pd  1.90 -15.19 8.54 1.85 -14.82 8.34 2.31 -13.72 8.02 

GEVq  -0.95 -18.10 9.53 -0.77 -17.58 9.17 -0.28 -16.34 8.31 

GPDmc  -8.00 -18.30 9.56 -0.75 -18.11 9.43 -0.31 -16.67 8.41 

POTem  -0.51 -22.83 11.68 -0.52 -21.48 10.99 -0.20 -18.66 9.43 

 

CONCLUSIONS    
 

Comprehensive approach consisting of the classification scheme for the choice of method for 

dynamic risk measures VaR  and CVaR  estimating, the algorithm and the new method of 

forecasting of risk measures for time series with long range dependence is proposed by the 

authors in studies [1-5]. In this article the approach is used to obtain the predicted values of 

dynamic risk measures for real data describing the Nasdaq-100 Index (NDX index) for the 

period from 08.02.2005 to 11.02.2015. To demonstrate the efficacy of this approach for time 

series with a wide range of volatility forecasts are constructed for three time series: the 

original data NDX and two modified time series obtained from the original by deleting time 

periods with high volatility. This allowes to compare forecasts built for data with similar 

statistical characteristics, but different volatility. 

 

Dynamic risk measures forecasts are constructed in accordance with the procedure of direct 

multi-step prediction, based on the model FIGARCH . Constructing the model the new 

method [1-5], based on the optimizational smoothing of the ACF and reduction of Yule-

Walker equations, is used. To check the quality of the forecasts standard statistical tests and 

specific tests, designed to test the dynamic risk measures, are used. 

 

Obtained predicted values and test results are shown in the figures and are displayed in tables. 

The analysis of the results confirms the effectiveness of the proposed approach for dynamic 

risk measures prediction. The classification scheme helps to determine the best method of 

forecasting for each time series. 

 

Application of the method of the optimizational smoothing of the ACF leads to the 

construction of sustainable forecasting of dynamic variations, that qualitatively repeats both 

the regular behavior and emissions of time series. The quality of forecasts is practically the 

same for all-time series regardless of their volatility that is confirmed by quality tests. Thus, 

the effectiveness of the developed approach for the forecasting of dynamic risk measures for 

time series with long range dependence in a wide range of volatility is confirmed. 
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