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ABSTRACT

In this paper, we prove the existence and uniqueness of solutions for a class of initial value
problem for impulsive fractional g-difference equation of orderi<a <2 by applying some
well-known fixed point theorems. Some examples are presented to illustrate the main results.
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INTRODUCTION

In recent years, the topic of g-calculus has attracted the attention of several researchers and a
variety of new results on q -difference and fractional g -difference equations can be found in
the papers [1-13] and the references cited therein. In [14] the notions of qi-derivative and g -
integral of a function f:J, =[t,.t.,,] — R have been introduced and their basic properties was
proved. As applications existence and uniqueness results for initial value problems for first
and second order impulsive g -difference equations are proved. In [15] , the authors applied
the concepts of quantum calculus developed in [14] to study a class of boundary value
problem of ordinary impulsive gx-integro-difference equations, some existence and
uniqueness results for this problem were proved by using a variety of fixed point theorems. In
[16] the authors used the q -shifting operator to develop the new concepts of fractional
quantum calculus such as the Riemann—Liouville fractional derivative and integral and their
properties. They also formulated the existence and uniqueness results for some classes of first
and second orders impulsive fractional q -difference equations. Inspired by[16], in this paper,
we study the existence and uniqueness of solutions for the following initial value problem for
impulsive fractional g-differ- ence equation of order 1<a <2 the form

L DExX(®) = f(t,x(1), ted tt,
AX(t) =g (X(t)), k=1,2,...,m,
A'X(t) =, (X)), k=12,...,m
x(0)=0, ,Dg "x(0) =B, Dg "x(n),
where J =[0,T], 0=t, <t <t, <---<t, <---<t <t ., =T, I, =[t,,t,], J, = (t,.t,,,] , k=12...,m., Dy

(1.1)

and, D;™ respectively are the Riemann-Liouville fractional g-difference of order o and «-1
on interval J,, O0<g <1for k=12...m, f:JxR—>R is a continuous function,
?.,9, €C(R,R) for k=12,...,m. The notation Ax(t, ) and A’x(t, ) are defined by
AX(t) =, 13 x(t) =, 15x(t), k=12,...,m,
AX(t) =, 12°x®t) -, 129%x(t, ),k =12,...,m

b "k G Ok

(1.2)

where  1;-“and, 1- respectively are the Riemann-Liouville fractional g-integral of order
l1-aand2-aond,. feR, k e{l,2,-,m}, ne(t .t .].
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Preliminaries

This section is devoted to some basic concepts such as g-shifting operator, Riemann—
Liouville fractional g-integral and g-difference on a given interval. The presentation here can
be found in, for example, [16,17].
We define a g-shifting operator as
2P (M =agm+(1-0g)a.

The power of g-shifting operator is defined as
L(-m® =1, (1-m)® = [ [(n -, @} (m), k eNUKie}
i=0

More generally, if y eR, then

= 1-_ @ (m/n)
-m =TT e Y
a(n m)q n ]i;)[]-_a/n(bg+l(m/n)
Definition 2.1. The fractional g-derivative of Riemann—Liouville type of order v>0 on

interval [a,b]is defined by (,D;f)(t)= f(t) and
Dy £)(®) =(,Dyly " (1), v>0,

a~ga'q
where | is the smallest integer greater than or equal to v.
Definition 2.2. Let «>0 and f be a function defined on [a,b]. The fractional g-integral of

Riemann-—Liouville type is given by (,1;f)(t) = f (t) and
a 1 t a-1
(1 f)(t):mja(t—a(bq(s)); )£ (s),ds, @>0,telabl].

From [16] , we have the following formulas for te[a,b],a>0,5eR :
S eaye, ey =
r(f-a+]) I(f+a+])
Lemma 2.3. Leta,fcR* and f be a continuous function on[a,b],a>0. The Riemann—
Liouville fractional g-integral has the following semi-group property
NSO =, 1710 E ) =, 177 ().

Lemma 2.4. Let f be a g-integrable function on[a,b] . Then the following equality holds

DI 1Ef(t)=f(t). For @>0,tefa,b].
Lemma 2.5. Le ta>0 and p be a positive integer. Then forte[a,b] the following equality
holds

D (t-a)’ = (t—a)’.

1% DPF(t) = Dplaf(t)—f t-a) " i
a’9s™d @ Taala Sr(a+k-p+® 0 7

Lemma 2.6. ([18])Let E be a Banach space. Assume that «is an open bounded subset of E
with 6.2 and let T:2 — E be a completely continuous operator such that
Tu]| <||ul, vu e 6£2..

Then T has a fixed point in 2.
Lemma 2.7. ([18]). Let E be a Banach space. Assume that T:E—E is a completely
continuous operator and the set V ={ueE|u=4Tu,0<x<1}is bounded. Then T has a fixed
point in E.

Let PC(J,R)={x:J — R:x(t) is continuous everywhere except for some t, at which x(t)
and x(t,)
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exist and x(t, )=x(t ) k=12,3,...,m}. For yeR", we introduce the spaceC,,(J,,R)={x:J, -
R:(t—t) x(t)eC(J,,R)} with the norm [x|. =sup,, (t-t)'x(t) andPC, (J,R)={x:J >R:

for eachte J, and
(t—t) x(t) eCQJ,,R),k=0,12...,m} with the norm|x| . =max{sup,_,

(-t x(®):k=012...,m}.
Clearly PC, (J,R) is a Banach space.

Lemma2.8.00 If xe PC(J,R) is a solution of (1.1), then for any te J, ,k=12,...,m,

m(t-t)*7? L my(t )"t

x(t)= @D @) + 1 f(tx(), (2.1)
Where
RO I ERICEOIGEEO)
2 Y -t (e T XENE) o (XN |+ D (12, TS X)) +oi (X))
22) |
b e DURICLOIDESDY (1,13, F (s XN + 0, (X)) )]
O<tj<n (23)
+ 2 (15, FEXENE) + o (X())),
With > 0=0.

0<0
Proof. For teJ,, taking the Riemann-Liouville fractional q,-integral of order « for the

first
equation of (1.1) and using Definition 2.1 with Lemma 2.5, we get

X(t)= qut(a Gt on Gl fx) (2.4)
whereC,=,12“x(0) and C,=,I;“x(0).The first initial condition of (1.1) implies thatC,=0
.Taking the Riemann-Liouville fractional g, -derivative of order « —1for (2.4) on J,, we have

oDEX(M) =C, + 11 T (L X(1)

And ,D;'x(0) = C, .Therefore, (2.4) can be written as
I, (a )
Applying the Riemann-Liouville fractional q,-derivative of orders 1-«and 2—« for (2.5) at
t=t,, we have
olg X)) =C,+ g FEXENM),  olg “X(G)=Cti +olg f (S, X)) | (2.6)
For te J,=(t,,t,], Riemann-Liouville fractional g, -integrating (1.1), we obtain
w(=LE0 gy DT gy e ), 2.7)
I'y (a 1)“‘1 Tya) *® v
Using the jump conditions of equation (1.1) with (2.6)-(2.7) for te J,, we get

_ (- (t-t)*"
X(t)—m[clti+ olg F (S XN+ (X(Q)]+——— I (@)

x(t)—

12 F (L x(). (2.5)

[C, + o1y, T (S, X()(H) + o (X + , T T (E (D)
Repeating the above process, fort e J, =(t,,t,,,], we obtain

Progressive Academic Publishing

www.idpublications.org]



European Journal of Mathematics and Computer Science Vol. 4 No. 1, 2017
ISSN 2059-9951

)= e+ TS 4,1 FEXONG) 0, 0,)

( _1) 0<t, <t 0<t; <t ER
¢ 3 (12 X Ha e+ t()“) c, (2.8)

+ 2 (o 1a FEXEN) +a XA T+, 18 F (EX(1)),

1 Ok
O<t, <t

Taking the Riemann-Liouville fractional g, -derivative of order «-1for (2.8) and using
I, (0)=o0,
it follows that

L DIX()=C, + Y. (tH 15 TS X)) + o, (X(tj))) +, 13 (LX)

O<tj<t
For k, e{L,2,---,m}, ne(t .t .], we have
t Dé‘;X(n)=C1+OtZ (t o, FE X)) +¢; (X(t,»))) o 1o, F(8X(8)() -
The initial condition ,D;™x(0) =4 D;’m’lx(n) leads to
C="— £ [Z( 1';1f(S,X(S))(t,-)+<0,-(X(t,-))) t qk f(s,x(s)(m)]-
1 ﬂ O<tj<n ti
Substituting the value of C,in (2.8), we obtain (2.1). Conversely, assume that x is a solution

of the impulsive fractional integral equation (2.1), then by a direct computation, it follows
that the solution given by(2.1)satisfies equation (1.1). This completes the proof.

Main results

This section deals with the existence and uniqueness of solutions for the equation (1.1) . In
view of Lemma 2.8 , we define an operator A:PC(J,R) — PC(J,R) by

— ml(t _tk){%2 mz(t _tk)a B
(AX)(t)= I (@ + I (@) +¢ g FEX(1),
where m;, m, are given by (2.2) and (2.3).
X g fjm &)
X x=0 X
(1.1) has at least one solution.
Proof. To show that Axe PC, (J,R) forxePC,(J,R), we supposez,,z, € J,, and 7, >,, then

(7~ 1) AX(7) — (7, — 1) AX(z,)|

¢7k()

Theorem 3.1. Let lim =0 and lim=-==0 (k=12,..,m), then equation

— m,(z, — )aiz mz (m—-t)" -
=|(m -t )L I, (@1 I (@) + Mg T (s, x(5))(7)]
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m -t a-2 m —t a-1
—(r,-t)'[ (7, 1) " , (7, — 1)

I, (a-1) . (a) by T X(E)(7,)]
sI(rl—tk)f/; (;(le)—tk)wa | 41ﬂ_tkﬂ|[% 13, T (8, x(8)| () + Z ( 1L [F X)) + oy ))|)

0<ty <t O<t;<t,

F20D e=ted) (o, 1T XEIEN +o, ]+ X (12,1 (5 x(D] (k) + [ (x|

O<t, <t

(m-t)" " —(-t)™ | B )
| @ |{141 ﬂI[‘“" tGs, X(S))|(n)+0<z<,7(t e f(s,x(s))|(tj)+|¢j(x(tj))|)]
+ZLHWH@x@MU+MQGM) ()u 8 [, @ GNP T (.X(6)), 0,5

~1) (7= @ (S = (7, =) (7, = @ (S)L 11 (5,X(5)),, d

As 7, >1,, We have|(r, -t,)" AX(z,) - (z, -t,)" Ax(z,)| >0 for each k=012,...,m. Therefore, we

get AxePC (J,R). Now we show that the operator A:PC (J,R)—PC (J,R) is completely

continuous. Note that A is continuous in view of continuity of f,pande". Let B<PC (J,R)
be bounded. Then, there exist positive

[f (0=, |a ()| <L, |(p;(x)|sL3, vxeB. Thus, vxeB,
We have

constants L, >0 (i=1,2,3)such that

1

qﬁW+ZHqﬁ®ﬂﬂ0HZMUGW

i-1

+Ziﬁ..MUqJHM@MW+MU@WHZQJLH@M@MJﬂdwmm

‘l IB(L177+kL)+LLZ(t |1)tll+LZ(t |1)( 1)+le(tl ) kL3’

i-1

|m2| ﬁ‘_—‘(LﬂH koL,) + (Lt +KL,),

Lt-t)"
|f(t X(1)| < I (@ D

Therefore,

@~y o)< 2 [Illmﬂi("l”*kol—z) LY,

+ LZZ(ti _ti,l)(i —1)+ Lli(ti—;l)z+ kLg]
(t—tk)7+a—l| ﬂ | I—1(t_—tk)w
L@ [|1—ﬁ|("l’7+k°Lz)+L1tk+kLz]+ D @3.1)

7+a2 |ﬁT| 2
<rk( D |l ﬁ|(L177+mL)+mL3+2L1mT L —42]

T y+a-1

+
FQk (a)

LlT aty
I, (a+1)

[%‘(le mL)+ LT +mL,]+
which implies that
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||(Ax)(t)||£ [‘ (L177+mL2)+mL3 +2L,mT? +&]
1-4| 2
ML N LT
(@) I, (a+l) "
On the other hand, for anyt,,t, € J, ,with t <t,,0<k <m,we have
|t — 1) (A(E,) - & —t, ) (A)(L,)|

B
[1_5‘(L1n+ mL,)+ LT +mL,]+

|(t —t )7+a 2 (t —t )y+a 2 ﬂT | 2 ZTL
a3 5| (L7 olo) + g + 2LkT 4 =22
|(.[2 _tk )7+a—1 _ (t1 _tk)y+a—l | ﬂ |
+ T, @) [|1 ﬁ|(L177+ koL,)+ LT +KkL,]

|t -t 1 FEXENE) - —1) 15 F (X)) >0t~ 1)
This implies that A is equicontinuous on all the subintervals J, ,k=0.12,...,m. Thus, by
Arzela—Ascoli Theorem, it follows that A: PC, (J,R) — PC,(J,R) is completely continuous.

Now, in view of lim——=~ ftx) =0, lim 222 A =0 and Ilmgok( )

x—0 X x—0 X x—0 X
constant  r>0such that|f(t,x)|<& X, |a (X <6 X, | (|<8]x, for 0<|x<r, where
8, >0 (i=12,3)satisfy

=0 (k=12,...,m), there exists a

L vl 8,
I (@ _1)[|1 ﬂ|(5177+m5)+m5 +25,mT? L —2]

a-1 a
+ T [[—— s (5n+m5)+5T+m5]+L<1.

I, (@) 1-p I, (a+1)
Define @={xePC, (J,R):||x|<r}and take xePC (J,R) such that |x|=rso that xea«. Then,

by the process used to obtain (3. 1) we have

T2 2T5
t—t ) |(AX)(t)] < Sn+md,)+ms, +26,mT? +
(t—t)" [(A)(t)] {Fqk(a_l)[‘1 ﬁl( Yi 2) 5 +20; 2]
a-1 a
LT [i(5177+m52)+51T+m52]+L}||x|< X
I, (a)1-5 I, (a+1)

which implies that |(Ax)(t)|| <[], x € 0€2.
Therefore, by Lemma 2.6, the operator A has at least one fixed point, which in turn

implies that (1.1) has at least one solution x e 2. This completes the proof.
Theorem 3.2. Assume that
(Hy) there exist positive constants L; (i = 1, 2, 3) such that

[f (0| <L, |a. ()| < ()| <L, for teJ,xeR andk=12...,m

Then equation (1.1) has at least one solution.
Proof. As shown in Theorem 3.1, the operator A:PC (J,R)—PC (J,R)is completely

continuous. Now, we show the set V ={xe PC (J,R)|x = 12Ax,0 < u <1}is bounded.
LetxeV, thenx=uAx,0< u<1. ForanyteJ, we have

pm(E-t)" " am, (-t ) )
X() F ( —1) + 1" ( ) +,Utk|qkf(t,X(t)), (32)

wherem,, m,are given by (2.2) and (2.3). Combining (H;) and (3.2), we obtain
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y+a-2 _t yrtel
my|(t-t)" " pfm,|(t-t) Fult—t) 19 [F(tx)|

(t—t) [x(®)|< <4

I, (a-1) I, (a)
Ty+a 2 | ,HT | 2
_Fqk(a—l) |1 lB|(L177+mL)+mL3+2L1mT L —2]
lUT y+a-1 i ‘u I_1T a+y
+Fqk(a)[1_ﬂ‘(L1n+mL2)+L1T+mL]+F @ +1)

Thus, for anyteJ, it follows that|x|<L. So, the set V is bounded. Therefore, by the

conclusion of Lemma 2.7, the operator A has at least one fixed point. This impliesthat (1.1)
has at least one solution. This completes the proof.
Theorem 3.3. Assume that
(H2) there exist positive constants N; (i = 1, 2, 3) such that
60— FENI<N|X=Y], [ 00— N < N [x=], @ ()= (9)] <Ny [x -]
for teJ,xeR and k=12,....m
Then equation (1.1) has a unique solution if

A:T*[L
ri-p

Where T =max{T“?2,T“* T} " =min{l", (¢ -1, (@), ], (@ +D)}.
Proof. For x,yePC, (J,R), we have

*

(3.3)

(Ny77+mN, )(T +1)

IR Y _ (t_tk)}/+a72)‘| IH-I— | _
(t—t)" [(AX)(®) — (Ay)(D)| < o) l|1_ﬁ|[tk a | T (8. X(8) = T(s,¥(5))| ()

+ZD:tj,1 Ly, | T (s.x(8)— T (s, y(s)| 1)) +i|<0,- (X(t,)) — ¢, (y(t, )]

i-1

26t D618 5:X6) ~ (5, YO ) +|o, (X, ) -, (v(t,))))

+

EM*

+

T - ()|

Mz—

> (4 12,1 (s, x(5)— T (5, YO 6) +

’L

(t t)y+a1 | IB | B
e r|1 ﬁ|[tk 5. | F(5:x(8)) = £ (5, ¥())| ()

Z e [EExE)- s, y(s))|(t)+2|<oj(x(t )=, (yt))

+Z M OR f(s,y(s»|(t,-)+2|¢j (xX(t;) — ¢, (y(t; D

+Ht=1)", Ig [T (s,x(s) = (s, y(s)| (1)

t-t)° | AT | 2, 2TN
N k,N kN, +2N.kT
{F ( _1)[|1 ﬂ|( 71+ KN, ) + KN, + 2N, —2]
(t-t)** ‘ N,T
a7 —(N177+k0N2)+N1T+kN2]+ Hx-y|
I, (o) 1-p I, (a+]) P
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*

T k2T
< F*[l—ﬂﬂ (Ny77 +K,NL)(T +2) + KN, + N (L+T + 2KT ?) + N, (k +T)]"X_ y||PCy
* 2
< ;*[1 ﬂﬂ (N7 +mN)(T +2) +mN, + N, L+ T +2mT2) + N, (m +%)]||x— Yo
<Alx=yloe.

where Ais given by (3.3). Thus,|Ax—Ay|.. <A|x-y|. . As A<1, therefore, A is a

contraction. Hence, by the contraction mapping principle, equation (1.1) has a unique
solution.

Examples

Example 4.1. Consider the following impulsive fractional g-difference initial value problem:
3
. D(kum]x(t) =t*arctan® x(t) + e'x’(t), te [0,%],t #t,,

2k*+k+8
k

Ax(t,) =k —kcosx(t,), k=12,...,10,t, :E,

A'X(t ) =ksin® x(t, ),k =1,2,...,10,t, =%,
2 2 o1
x(0)=0, ;D;x(0) ==, D3 x(>),
8 5 1
Here a=3/2, q =(k®—3k+7)/(2k* +k +8), k=1,2,...,10, m=10, T =11/10, B=2/3, k, =2, n=1/4,
f (t, x(t)) =t*arctan® x(t) +eX3(t) , ¢, (X(t,)) =k —kcosx(t,) , g (X(t,)) =ksin® x(t,),

Clearly, all the assumptions of Theorem 3.1 are satisfied. Thus, by the conclusion of
Theorem 3.1, the impulsive fractional g-difference initial value problem 4.1 has at least one
solution.

Example 4.2. Consider the following impulsive fractional g-difference initial value problem:

2 e'sin® x(t)
ty D[2k343k+7])((t) ZW, tE[O,l],t ;ttk,
2k +k+8
AX(t,) =k +3kcos® x(t,), k=1,2,...,9,t, =%,
A'X(t,) =ksin(4+e %) k=12,..,9,t, :%,
3 2 3.1
x(0)=0, 0D72x(0):—1D§x(Z),
s 5o
Here a=3/2, g = (K ~3k+7)/(2k* +k+8), k=12,...,9, m=9, T =1, f=2/3, k,=2, n=1/4,
tain®
F0) = D, L (X0)) —k - keosx() g (L) —ksin(a-+e™),

Clearly L, =¢,L,=36,L,=9 and the conditions of Theorem 3.2 can readily be verified.

Therefore, the conclusion of Theorem 3.2 applies to the impulsive fractional g-difference
initial value problem 4.2,
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