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ABSTRACT 

In this study, the development of equations for estimating higher heating values (HHV) using 

proximate and ultimate analysis for some selected indigenous fuel woods such as Daniella 

(Copaiba) oliveri, Vitellaria paradoxa, Prosopis Africana and Hymenocardia, was carried 

out. The HHV otherwise known as calorific value of the five fuel wood species which is the 

heat liberated when a unit quantity of the fuel wood is completely burnt was determined 

according to ASTM D 2015-85 using bomb calorimeter model Parr 6400. The proximate and 

ultimate analyses of the five wood samples were determined by reducing the samples to 

powder form using hammer mill and sieved to obtain up to 250 µm grain size according to 

ASTM D2013-86 standard. The equation for calculating HHV from proximate analysis used 

for the correlation was assumed to be a function of fixed carbon (FC), volatile matter (VM), 

moisture content (MC) and ash content (AC). While that equation for calculating HHV from 

ultimate analysis used for the correlation was assumed to be a function hydrogen, oxygen, 

carbon, sulphur, and nitrogen. The constant and coefficients of multiple regression equations 

were evaluated using reglin function in SCILAB environment. The models formulated for 

the estimation of HHV were validated using percentage (%) bias error. The obtained results 

indicated that the calculated values of HHV from the developed equations from proximate 

and ultimate analyses were in good agreement with the experimental HHVs.  This was 

confirmed by lower positive bias errors of 0.030365, 0.171, 0.209, 0.499, and 1.137 % used 

for validation; thus confirming the validity and applicability of the equation for estimating 

HHVs for biomass.  

Keywords: Ultimate analysis, proximate analysis, high heating value, fuelwood. 

INTRODUCTION 

The higher heating value (or calorific value) of wood is the amount of heat released when a 

given mass of wood is burnt. The most important parameter to characterize a substance as 

combustible is the calorific value or higher heating value. The number of units of energy 

produced by the combustion of a unit mass of a fuel is termed calorific value. The higher 

heating value is the absolute value of the specific energy combustion, in joules for unit mass 

of a solid biofuel burned in oxygen in a calorimetric bomb under specified conditions [1]. 

Calorific value can be defined as the amount of energy per unit mass or volume released on 

complete combustion of a wood and further stated that the moisture content of wood changes 

the calorific value of the latter by lowering it.  Part of the energy released during the 

combustion process is spent evaporating water and is consequently not available for any 

desired thermal use; and that water evaporation involves the consumption of 2.44 MJ per 

kilogramme of water. 
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According to Lam and Sokhansanj (2014) calorific value of biomass is crucial to determine 

its energy that can be recovered during thermo-conversion. From recent studies, it was found 

that thermally treated biomass with increased calorific value could be a suitable candidate to 

blend and co-fire with coal for power generation with reduced greenhouse gas emissions. The 

most common methods currently being practiced to evaluate the heating of biomass are by 

using derived equation, or experimentally, by using the bomb calorimeter. There are 

numerous mathematical equations, which were created based on the data from physical 

composition, proximate or elemental analysis of biomass for computation of higher heating 

values (Telmo and Lousade, 2011). The energy content which also known as calorific value 

is the most essential parameter, which reflects effectiveness and efficiency of any fuel by 

determining the amount of heat generated from a unit mass (MJ/kg). Factors affecting the 

amount of heat produced by fuel refers to its quantitative conversion of carbon and hydrogen 

present in the fuel; to water and carbon dioxide is a function of chemical-elemental 

composition of fuel (Razak, 2016). The more the hydrogen and carbon content of the residue 

of the tree, the greater the heating value (Adikiigbe, 2012). 

Direct experimental determination of the heating value of carbon based materials can be 

accomplished by means of an adiabatic calorimeter. However, there are number of equations 

found in literature for an estimation of heating values of different carbo-based materials such 

as coal and lignocellulosics. The majority of these equations is based on elemental analysis 

and have been derived for coals and liquid fuels (Cordero et Al., 2001).  According to Elneel 

et al. (2013) the heating value can be experimentally or numerically determined and the 

determination of heating value experimentally using bomb calorimeter involves laborious 

measurements while an ultimate analysis can be performed using automatic equipment. The 

authors further stated that there were many attempts to estimate the heating value of biomass 

based fuels on chemical analysis, proximate analysis and ultimate analysis. Proximate 

analysis data of solid fuel comprises of moisture content, volatile matter, ash, and fixed 

carbon. The HHV and proximate analysis data are usually used to generate multiple linear 

regression correlations and these correlations showed the influence of proximate analysis data 

on the HHV. Some possible combinations of dependent variables (proximate analysis data) 

that contribute to the energy content were developed and evaluated to produce the 

mathematical models (Gunamantha, 2016). Other researchers such as Parikh et al. (2005), 

Cordero et al (2001) and Gunamantha, (2016) carried out an investigation for the 

development of equations for calculating HHV from proximate analysis of some biomass. 

Ultimate analysis correlations take into account the elemental composition of fuels, that is the 

mass fraction of carbon (C), oxygen (O), and hydrogen (H), and sometimes addition of 

nitrogen (N) and sulphur (S). The ultimate analysis based models by Dunlong  (1880) as 

reported by Elneel et al. (2013), was the first model developed for calculation of heating 

values which was intended for prediction of heating values for coal samples. Many 

researchers thereafter proposed the variations of Dunlong’s model, including new coefficients 

and sometimes new expressions. In 1997, Tillman as cited in Elneel et al. (2013) developed 

two new equations (the second derived from the first) to estimate he heating value from the 

ultimate analysis for biomass fuels and suggested that the biomass heating value has a very 

strong function in its carbon content. The estimation of HHVs from ultimate analysis were 

also investigated by other researchers such as Demirbas et al. (1977), and Elneel et al. 

(2016). Hence, this research studied the development of equations for estimating higher 

heating values from proximate and ultimate analyses of some fuel woods such as Daniella 

(Copaiba) oliveri, Vitellaria paradoxa, Prosopis Africana and Hymenocardia. 
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MATERIALS AND METHODS 

Materials 

The materials used for the research include the following:  Five fuel wood species, 2 

aluminium pot lids, digital balance (Metriz 235), oven (carbolite), bomb calorimeter (Parr 

6400), infrared thermometer (EUROLAB 8811A), hammer mill, platinum crucibles.   

Preparation of wood samples 

The fuel wood samples were identified, collected around University of Agriculture, Makurdi 

road and dried for one month according to standard practices in order to reduce the moisture 

content shown in (Adekiigbe, 2012) 

Determination of Higher Heating Value (HHV) 

The Higher Heating Value (HHV) otherwise known as calorific value of the 5 fuel wood 

species which is the heat liberated when a unit quantity of the fuel wood is completely burnt 

was determined according to ASTM D 2015-85 using bomb calorimeter model Parr 6400. It 

consists of a small cup that contain the sample, oxygen, stainless steel bomb, water, stirrer, 

thermometer, ignition circuit connected to the bomb and printer. 

The 5 wood samples were ground into powder form using hammer mill and sieved using 250 

µm sieve size.  One gram of the powder of sample A (Copaiba oliveri) was placed inside the 

small cup of the calorimeter, pressurized with pure oxygen at about 30 atm and small amount 

of water added to saturate the internal atmosphere. The whole bomb was submerged in water 

and electrically ignited. Energy was released by the combustion and the heat generated 

flowed across the stainless steel wall, thus raising the temperature in the steel bomb, its 

contents and the surrounding water jacket. The HHV was obtained from temperature 

observations made before, during and after combustion, making proper allowances for heat 

contributed by other processes, and for the thermometer and thermochemical corrections 

(ASTM D-85). The result of HHV was calculated by the software installed on the machine 

with the HHV result displayed on the touch screen and printed out. These procedures were 

repeated for samples B (Prosopis Africana), C (Quassia undulata), D (Vitellaria paradoxa) 

and E (Hymenocardia) to obtain the Higher Heating value 

Determination of proximate and ultimate analyses 

The samples were collected with due care in order to obtain the most representative samples. 

The samples were reduced to powder form using Hammer mill and sieved to obtain up to 250 

µm grain size according to ASTM D2013-86 Standard method. 

Moisture Content: One gram of the sieved sample A (Copaiba oliveri) was introduced into 

pre weighed platinum crucibles and passed to the drying oven at   105
o
C for a period of one 

hour, the weight was recorded after cooling in the dessicator. The moisture content was 

calculated using equation (1) (Mitchual et al, 2014). 

    
     

  
                                                                                                  (1) 

Where, 

MC is the moisture content 

Pi, is the initial weight, 
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Ps, is the weight of the charcoal after subjecting to 105
o
C 

This procedure was repeated for samples B (Prosopis Africana), C (Quassia undulata), D 

(Vitellaria paradoxa) and E (Hymenocardia) to obtain their moisture contents. 

Volatile Matter: One gram of sieved sample A (Copaiba oliveri) was introduced into pre 

weighed platinum crucible, covered with lid and placed into the furnace at 105
 o

C in order to 

determine the weight of charcoal and 950 
o
C according to ASTM D 2013 standard procedures 

and maintained at that temperature for about seven (7) minutes. The weight was recorded 

after cooling in the dessicator and the volatile matter was calculated using equation (2) 

(Marqueze-Mantesino et al, 2001).  

    
     

  
                                                                          (2) 

Where, 

VM is the volatile matter 

PS is the weight of charcoal after subjecting to 105 
o
C, 

PV is the weight of the charcoal after subjecting to 950 
o
C 

The same procedure was repeated for samples B (Prosopis Africana), C (Quassia undulata), 

D (Vitellaria paradoxa) and E (Hymenocardia) to obtain the volatile matter.  

Ash Content: One gram of the sieved sample A (Copaiba oliveri) was introduced into a pre 

weighed platinum crucible, placed into the furnace at 950 
o
C and was allowed to burn 

completely to a constant weight. The loss in weight was recorded and the ash content was 

calculated using equation (3) (Marqueze-Mantesino et al, 2001); 

    
  

  
                                                                        (3)                                                     

AC is the ash content 

Pa, the weight of the ashes 

PV, the weight of the charcoal after subjecting to 950 
o
C 

Fixed Carbon: Percentage of fixed carbon (FC) was determined by the difference between 

100 % and the sum of the percentages of moisture content, ash content and volatile matter, 

using equation (4) (Jigisha et al, 2006). 

                                                                                             (4) 

Where, 

FC is the fixed carbon 

MC is the volatile matter, AC is the ash content 

Ultimate analysis: A correlation for calculating elemental composition from proximate 

analysis of the test samples was used to generate ultimate analysis result using relations in 

equations 5- 8 (Jigisha et al, 2006). 
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The analysis of variance (ANOVA) was carried out at 5 % significant level in order to 

determine whether there is significant difference among the five wood samples in terms of 

proximate analysis. 

                                                                                                   (5) 

                                                                                                   (6) 

                                                                                                   (7) 

Where; 

C is carbon; 

H is hydrogen; and 

O is oxygen. 

Sulphur S was obtained using the relation in equation (8) 

                                                                                      (8) 

The N content was determined from Kjedahi method using ASTM- D3179 standard. Exactly 

2 g of sample was weighed into a Kjeldahi digestion flask. 20 ml sulphuric acid and 1 g each 

of copper sulphate and potassium sulphate as catalysts were added into the flask. The flask 

was heated gently until boiling; the mixture was then diluted with 100 ml of distilled water 

and allowed to cool. The flask was then connected to the Kjeldahi distillation apparatus and 

sodium hydroxide solution was added to the mixture and then heated to boiling. The 

ammonia gas was condensed into the receiving flask containing 2% boric acid. Bromocresol 

green and methyl red indicators were added dropwise and alkaline distillate was titrated 

against 0.1 M hydrochloric acid. The procedure was repeated for the 13 samples and the 

percentage of nitrogen was calculated as shown in equation (9) (Adekunle et al. 2015): 

        
                                        

        
              (9)       

where: 

VH2SO4 = mL standard H2SO4 pipetted into flask for sample, VNaOH = mL standard NaOH 

used to titrate sample, NH2SO4 = Normality of H2SO4, NNaOH = Normality of NaOH, VBK 

= mL standard NaOH used to titrate 1ml standard H2SO4 minus B, B = mL standard NaOH 

used to titrate reagent blank distilled into H2SO4 

1.4007 = milliequivalent weight of nitrogen x100, and W = sample weight. 

 

Correlation for Calculating Higher Heating Value (HHV) from Proximate and Ultimate 

Analyses 

Proximate analysis: The following equation was formulated for computation of HHV from 

proximate analysis; as HHV was found to be proportional to carbon content and hydrogen 

content (Parikh et al, 2005). The result of proximate analysis used for the correlation of 

equation for estimating HHV is presented Table 1. Hence the HHV was assumed to be a 

function of fixed carbon (FC), volatile matter (VM), moisture content (MC) and ash content 

(AC) as shown in equation (10); 

                                                                     (10) 
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where   is a constant,   ,   ,   ,and    are coefficients of the multiple regression equation to 

be determined by the experimental results of proximate analysis. The development of 

equation for estimating HHV was also done graphically by plotting HHV against the 

proximate analysis results. 

Ultimate Analyses: Two equations were formulated for calculation of HHV from ultimate 

analysis. Firstly to capture hydrogen (H), oxygen (O), and carbon (C) and secondly to capture 

hydrogen (H), oxygen (O), carbon (C), nitrogen (N), and sulphur (S); the equations were 

(equations 11-12); 

                                                                                 (11) 

                                                                   (12)  

The equations were formed on the assumption that HHV is a linear function of ultimate 

analyses (Parikh et al, 2005). The multiple regression equations (10)-(12) were solved using 

Sample codes (shown in Appendix 1, 2 and 3) using the reglin function in the SCILAB 

environment evaluate the coefficients                      . These coefficients were then 

substituted into equations (10), (11) and (12) for each equation to give the estimated HHV. 

The models formulated for the estimation of HHV were validated using percentage (%) bias 

error as given in equation (13) (Gunamantha, 2016); 

    
 

 
 

         

    
     

                                                    (13) 

Where, subscripts e and m indicate the estimated value from model (calculation) and from the 

result of measurement respectively and n, the number of samples. The development of 

equation for estimating HHV was also done graphically by plotting HHV against ultimate 

results (oxygen, and hydrogen) and fitting the trend lines to obtain the equations 

Table 1: HHV, Proximate and ultimate analyses results of wood Samples investigated 

 

RESULTS AND DISCUSSION 

Correlation for calculating HHV using proximate analysis 

The constant and coefficients of multiple regression evaluated using reglin function in 

SCILAB environment were substituted into equation (10) to form equation (14), for 

  A B C D E 

Proximate analysis (%) Moisture 

content 

Fixed carbon 

4.35 

 

16.58 

5.63 

 

21.30 

3.01 

 

9.45 

4.74   

 

20.81     

4.97 

 

16.49 

 Volatiles 

matter 

64.23 66.25 

 

39.27 66.64 65.05 

 Ash content 

Sulphur 

content 

14.79 

0.05 

6.79 

0.03 

4.82 

0.029 

7.77 

0.04 

13.43 

0.06 

Ultimate analysis (%, dry ash 

free) 

C 41.7654 46.2735 25.2571 45.7339 42.3632 

 H 5.1141 5.5642 3.1128 5.5077 5.1987 

 O 37.6844 40.6901 22.9981 40.3031 38.3425 

 N 0.5961 0.6522 0.3630 0.6453 0.6056 

HHV(Kcal/k g)  3935.620 4461.933 2282.14 4400.13 3974.1641 
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estimation of HHV from proximate analysis (fixed carbon, volatile matter, moisture content 

and ash content). 

                                                           (14) 

The HHVs of the samples estimated from the developed equation (14) range from 9.575 (C-

Quassia undulate) to 18.714 MJ/kg B (Propdopis Africana) are shown in Table 1. The HHVs 

of the other samples were, 16.443, 18.515, and 16.610 MJ/kg for samples A (Daniella 

oliveri), D (Vitrllaria paradoxa) and E (Hymennocardia) respectively. The experimental 

values of HHV were 16.437, 18.682, 9.555, 18.423, and 16.423MJ/kg, for samples A 

(Daniella oliveri), B (Propdopis Africana), D (Vitrllaria paradoxa) and E (Hymennocardia) 

respectively are also shown in Table 1. It was observed that the calculated values of HHV 

were in good agreement with the HHV values developed from equation (14).  This 

observation was confirmed by validation of the model using bias error. The error analysis 

confirmed the validity and applicability of the model to biomass.  Positive bias errors of 

0.0365, 0.171, 0.209, 0.499, and 1.137 % were obtained at values of 16.443, 18.714, 9.55, 

18.423 and 16.423MJ/kg respectively. Elneel et al. (2013) stated that a positive value of 

average bias error implies estimation goes beyond measurement, while a negative value 

indicates an overall estimate below the measurement results.   These results were in 

agreement with other researchers such as Elneel et al. (2013) and Gunanmantha (2016) where 

the bias errors were -16 - 4.5 %. 

 

Table 2: Measured and computed HHV of wood samples from developed model and 

other      models using proximate analysis 

Samples Measured 

 HHV 

(MJ/kg) 

HHV (MJ/kg) from 

New Equation (14)  

Bias error   

A (Daniella 

oliveri) 

16.437 16.443 0.0365  

B (Prosopis 

Africana) 

18.682 18.714 0.171  

C (Quassia 

undulata) 

9.555 9.575 0.209  

 D (Vitellaria 

paradoxa) 

18.423 18.515 0.499  

E (Hymenocardia) 16.423 16.610 1.137  

. 

The correlation of HHV with proximate analysis was also done graphically. The correlation 

of Higher Heating Values (HHVs) with ash content (AC) as presented in Figure 1 showed 

that, the HHVs of the wood samples decreased with increase in ash content.  This confirmed 

earlier findings by Jenkins et al. (1998) who stated that wood with less than 1 % ash typically 

has heating value of 20 MJ/kg and increase in each 1 % ash translates roughly into a decrease 

of 0.2 MJ/kg. This is because ash does not contribute substantially to the overall heat released 

by combustion, although elements in the ash may be catalytic to the thermal decomposition 

(Kumar et al.2009). Montes et al. (2012) stated that ash content reduces HHV because ash is 

the non-combustible mineral residue in the wood as too much of it prevents the liberation of 

heat.  Highly negative correlation was found between the HHV and ash content which gave 

the R
2 

of 0.9944. This value of R
2
 was higher than the value of R

2
 = 0.79 presented by Nasser 

(2014) with the simple regression equation given as  
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HHV = 4748.1 – 51.599AC                                                                           (16) 

 

Figure 1: Correlation for estimating Higher Heating Values with Ash Content. 

Figure 2 presents the correlation of HHVs and fixed carbon content for five wood samples 

investigated and it shows that HHVs increased with increasing fixed carbon content. This 

confirms the findings reported by Nasser and Aref (2014). They stated that carbon is one of 

the main heat producing elements and therefore biomass with high fixed carbon tends to have 

higher HHV. Jenkins et al. (1998) also found correlations between the carbon and HHV; they 

found out that every 1 % increase in carbon raises the HHV by approximately 0.39 MJ/kg. 

The results obtained in this study indicate a high positive correlation of the HHV with fixed 

carbon content (R
2 

= 0.9571) with simple regression analysis which showed that the trend of 

the data for all the sample studied was best described by  

HHV = 661.44 + 187.34FC (R
2
 = 0.9571)                                               (17) 

This relationship means that about 95.71 % of the total variability in the heating value was 

fixed carbon (FC).  Montes et al. (2012) stated that fixed carbon (FC) is the solid combustible 

residue that is left after a wood particle is heated and volatile matter expelled; that a high FC 

content indicates that the wood will require a longer combustion time, thereby leading to 

increase in HHV ( which is the heat release when 1 kg of wood is burnt). This result could 

mean that the wood samples are rich in lignin which is the heat producing element in woods 

rich in carbon and hydrogen.  

 

HHV = -51.599A + 4748.1 
R² = 0.9944 
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Figure 2: Correlation for estimating Higher Heating Values with Fixed Carbon 

Content. 

The correlation between HHV and oxygen content (OC) as presented in Figure 3 clearly 

indicates that HHV increased with rising oxygen content thus contradicting the earlier  

findings by Ragland and Aerts (1991) that the effect of oxygen is to reduce the calorific value 

of the wood to about one half that of conventional fossil fuel. During combustion this oxygen 

is incorporated into the water and carbon dioxide in the combustion product gases. The 

results gave a high correlation of the HHV to oxygen content (R
2 

= 0.9887) with simple 

regression analysis which showed that the trend of the data for all the sample studied was best 

described by equation (18) 

HHV = -494.27 + 119.5OC (R
2
 = 0.9887)                                                   (18) 

Raglands and Aerts (1991) stated that char oxidation is the dominating reaction in a 

combustion environment. Since this is a surface reaction, the reaction rate depends on 

kinetics and diffusion of oxygen to the char surface. This is perhaps the reason for the 

discrepancy in the observation.   

Correlation for calculating HHV using ultimate analysis 

The models given in equations (11) and (12) for estimation of HHVs from ultimate analysis 

(H, C, O, N, and S) was fitted to the experimental data by regression analysis, in order to 

estimate the constant and coefficients. The constant and coefficients estimated using reglin 

function in SCILAB environment were substituted into equations (12) and (13) to form 

equations (19) and (20); 

                                                                  (19) 

                                                         (20).           

Equation (19) was developed to capture H, O, and C, while equation (20) captured H, O, C, 

N, and S. 

The equations (19) and (20) developed were used to estimate the HHVs of the wood samples 

investigated as shown in Table 3. The HHVs of 33.886, 37.638, 20.177, 37.220 and 34.430 

MJ/kg were obtained by equation (19) for A (Daniella oliveri), B (Propdopis Africana), D 

(Vitrllaria paradoxa) and E (Hymennocardia) respectively. This result clearly showed that 

the developed model did not estimate the HHVs correctly compared to the experimental 

values (16.437, 18.682, 9.555, 18.423 and 16.423 MJ/kg for A-Daniella oliveri), B-

Propdopis Africana, D -Vitrllaria paradoxa and E - Hymennocardia , respectively) as 

HHV = 187.34FC + 661.44 
R² = 0.9571 
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observed by higher bias errors. Bias errors were 21.230, 20.293, 22.223, 20.406, and 21 % 

were observed between the predicted and experimental values.  

 

 

Figure 3: Correlation for estimating Higher Heating Values with Oxygen Content. 

However, the HHVs estimated by equation (20) (Table 2) were 16.438, 18.682, 9.556, 18.423 

and 16.640 MJ/kg for A (Daniella oliveri), B (Propdopis Africana), D (Vitrllaria paradoxa) 

and E (Hymennocardia) respectively. While the experimental values of HHV were 16.437, 

18.682, 9.555, 18.423 and 16.423 MJ/kg for A-Daniella oliveri), B-Propdopis Africana, D -

Vitrllaria paradoxa and E -Hymennocardia respectively. This observation clearly showed 

that the developed equation (20) estimated accurately the HHVs of the samples investigated. 

This was confirmed by lower values of bias errors of 0.484, 0.000, 0.0105, 0.000, and 0.264 

% used for the validation of the model. This finding agreed with Thipkhunthod et al. (2006) 

who stated that bias errors should be or close to zero for effective performance of models. It 

was also observed that the estimated values of 18.682 and 18.423 MJ/kg using equation (20) 

were the same as the experimental values with 0.000 % bias errors. 

 

Table 3: Measured and computed HHV of wood samples from developed models models 

    using ultimate analysis 
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 Equation (19) 

 (2017)        

(MJ/kg) 
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(%) 

HHV New 

Equation (20)  

(2017) (MJ/kg 

Bias error 

(%) 

A (Daniella oliveri) 16.437 33.886 21.230 16.438 0.484 

B (Prosopis Africana) 18.682 37.638 20.293 18.682 0.000 

C (Quassia undulata) 9.555 20.177 22.233 9.556 0.0105 

D (Vitellaria paradoxa) 18.423 37.220 20.406 18.423 0.00 

E (Hymenocardia) 16.423 34.430 21.929 16.640 0.264 
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CONCLUSION 

It was concluded that the three equations for estimating HHV from proximate and ultimate 

analysis were observed to predict HHV accurately as confirmed by low bias errors. It was 

observed that correlation for calculating HHV of the investigated fuelwood samples using 

ultimate analysis (equation 19) was more accurate than the proximate analysis equation 

(equation 14). This trend was supported by Parikh et al. (2005) and Sheng and Azevedo 

(2005). They reported that correlations based on ultimate analysis are most accurate and 

reliable. The reason for this was further explained by Elneel et al. (2013) that correlations 

based on proximate analysis had low accuracy because proximate analysis provides only an 

empirical composition of the biomass.  
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APPENDICES 

Appendix 1: Sample Code for Multiple Regressions using the Reglin Function for 

correlation calculating HHV from proximate analysis 

x1=[16.58 21.30 9.45 20.81 16.49] 

x2=[64.23 66.25 39.27 66.64 65.05] 

x3=[14.79 6.79 48.24 7.77 13.43] 

x4=[4.35 5.62 3.01 4.74 4.97] 

y=[16.437 18.682 9.555 18.423 16.640] 

X=[x1; x2; x3; x4;];// create matrix x from the four rows 

[a, a0, sigma]=reglin (X,y);// perform a multiple regression analysis of y as a function of x1, 

x2, x3 and x4 

ypred = a0 + a(1)*x1 + a(2)*x2 + a(3)*x3 + a(4)*x4 // fitted data 

filename = myreglindir + basename(myfile) + "-plot.png";// create filename from basename 

of file 

xs2png(wn, filename);// save graphic in PNG format 

result = ["a0" "a(1)" "a(2)" "a(3)" "a(4)"];// first row of data 

Appendix 2: Sample Code for Multiple Regressions using the Reglin Function for 

correlation calculating HHV from ultimate analysis using H,O and C 

 

x1=[5.1141 5.5641 3.1128 5.5077 5.1987] 

x2=[37.6844 49.6901 22.9981 40.3031 38.3425] 

x3=[41.7654 46.2735 25.2571 45.7339 42.3632] 

y=[16.437 18.682 9.555 18.423 16.640] 

X=[x1; x2; x3;];// create matrix x from the three rows 

[a, a0, sigma]=reglin (X,y);// perform a multiple regression analysis of y as a function of x1, 

x2 and x3 

ypred = a0 + a(1)*x1 + a(2)*x2 + a(3)*x3 // fitted data 

filename = myreglindir + basename(myfile) + "-plot.png";// create filename from basename 

of file 

xs2png(wn, filename);// save graphic in PNG format 

result = ["a0" "a(1)" "a(2)" "a(3)"];// first row of data 

 

 

Appendix 3: Sample Code for Multiple Regressions using the Reglin Function for 

correlation calculating HHV from ultimate analysis using H,O and C 
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x1=[5.1141 5.5641 3.1128 5.5077 5.1987] 

x2=[37.6844 49.6901 22.9981 40.3031 38.3425] 

x3=[41.7654 46.2735 25.2571 45.7339 42.3632] 

x4=[0.5961 0.6522 0.3630 0.6453 0.6056] 

x5=[0.05 0.03 0.029 0.04 0.06] 

y=[16.437 18.682 9.555 18.423 16.640] 

X=[x1; x2; x3; x4; x5;];// create matrix x from the four rows 

[a, a0, sigma]=reglin (X,y);// perform a multiple regression analysis of y as a function of x1, 

x2, x3, x4 and x5 

ypred = a0 + a(1)*x1 + a(2)*x2 + a(3)*x3 + a(4)*x4 + a(5)*x5 // fitted data 

filename = myreglindir + basename(myfile) + "-plot.png";// create filename from basename 

of file 

xs2png(wn, filename);// save graphic in PNG format 

result = ["a0" "a(1)" "a(2)" "a(3)" "a(4)" "a(5)"];// first row of data 


