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ABSTRACT

Several research works have studied on the performance of variable selection techniques in
logistic regression but were limited to models without interaction. In this research, we considered
a comparative study of some variable selection techniques in logistic regression for models with
and without interaction. Newton Raphson iteration method was applied to obtain coefficients of
the variables in the full model (model without interaction). The performance of each technique
was judged by their Akaike Information Criterion (AIC) value and the value of the Area under
Reciever’s Operating Characteristic (AROC) curve. Our findings show that for models without
interaction, the forward stepwise, backward stepwise and best subset methods gave same result.
Also, for model with interaction, Best subset method outperformed the other two methods. The
AROC also revealed that the model fitted using these three methods have an excellent
discrimination ability.

1. INTRODUCTION

Logistic Regression is an approach to studying relationship among variables when the dependent
variable is categorical (dichotomous, polytomous or ordinal). Binomial logistic regression or
binary logistic regression is an aspect of logistic regression that deals with a dependent variable
with dichotomous outcome (pass or fail, success or failure, dead or alive, etc). Statistical
modeling is aimed at fitting a model with a minimized number of variables which gives a better
description of the data and also results in numerical stability. Some commonly used methods for
selecting variables in logistic regression include forward selection, backward elimination,
stepwise selection, best subset selection, purposeful selection, tabu search, and Bayesian model
averaging.

Wang et al. (2004) compared the performance of Bayesian Model Averaging method and
stepwise selection method. Their work result in a conclusion that the Bayesian Model Averaging
is better that the stepwise selection method. Saker at el. (2009) conducted a study which was
aimed at selecting variables for fitting a model for the explanatory variable. They used both
stepwise selection method and best subset selection method for variable selection. Their findings
revealed that both methods gave same results, but they did not consider comparing the
performance of these methods when there are interaction factors present in the model. Hosmer
and Lemeshow (2000) also showed that both stepwise selection method and Best subset selection
method selected same variables using the UIS data. They also did not consider variable selection
when interaction factors are present.

In the absence of comparison of the performance of these three variable selection methods when
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interaction factors are present in the model, we are studying the performance of these selection
methods to identify the one which is more reliable in the presence of interaction using the
model’s AkaikeInformation Criterion (AIC) value and the Area Under the Reciever’s Operating
Characteristic (ROC) curveas a measure for this comparison.

This work is limited to the use of these variable selection techniques in Binary Logistic
Regression and did not extend beyond models with two factor interactions.

2. METHODS

A model (without interaction) containing all variables is fitted and these three selection
techniques are used to select variables that are considered important. Following this selection is a
selection of variables using these three selection techniques when two factor interactions are
present. The preferred technique resulting in the suitable fitted model is judged using the
Akaike Information Criterion (AIC) and the Area under Receiver’s Operating Characteristic
(AROC) curve. We performed Newton Raphson Iteration to obtain the coefficient of the
variables in the full model (model with all main effect factors). Best subset selection method
was done with XLMINER and SPSS 20 was used for forward stepwise, backward stepwise
selection and Area under Receiver’s Operating Characteristic (AROC) curve. To compare the
performance of Best Subset method to other methods, the set of variables resulting in a model
with minimum AIC among the selected subsets of models is compared with the AIC resulting
from the set of variables selected by other methods.

2.1 Data

The data is a primary data collected (using a questionnaire) from commercial motorcycle
operator who carry out their commercial motorcycle operation within some (Aluu, Omagwa,
Isiokpo and Elele) areas of Ikwerre Local Government Area. Data was collected from loading
points in Aluu, Omagwa, Isiokpo and Elele using a questionnaire. Out of a total of 705
motorcycle operators who are members of the commercial motorcycle operator’s union in
Ikwerre Local Government Area, a total of 303 motorcycle operators took part in the survey and
274 filled their questionnaire correctly, while 29 of them had some issues with their response.
The 274 motorcycle operators whose questionnaires were correctly filled were used as the cases
for the study. There are seven independent variables with Crash Involvement as the dependent
variable. Dummy variable coding method was used for coding the variables. The variables and
variable coding are shown in Table 1.

Table 1. Categorical variable coding

Variable Measurement/category Parameter coding
1 2
Crash Involvement Not-involved (0) 0
Involved (1) 1
Motorcycle Ownership Rented (0) 0
Owner-operator (1) 1
Age Less than 30 years (1) 0 0
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30-40 years (2) 1
Above 40 years (3) 0 1
Possession  of  Valid | Have no valid license (0) 0
Driver’s License Have valid license (1) 1
Knowledge of Road Signs | Have no knowledge of road signs (0) 0
Have knowledge of road signs (1) 1
Alcohol Intake No (0) 0
Yes (1)
Marital Status Single (0) 0
Married (1) 1
Educational Status Have no formal education (1) 0 0
Primary education (2) 1 0
Secondary education and above (3) 0 1

2.2 Logistic Regression Model
Let N be the number of subjects/population in the dataset,
X = (X, X,.X5 ... X;)T, where X, is a collection of the outcomes of the i*" subject associated
with the k independent random variable and a constant ( x5 =1 Vi)
e, X; = (%0250, Xip0 oo X )
Let@ = (Qlf Q:r Qar ) ,'.,rjr, where
@;.i=123,..,N are binomial random variables (dependent variables) with values one for
success and zero for failure.
Let X;; = (X, X0 v ,X...)T be a column vector with the k independent variables as its elements.
Letn = (n,,n,, 15, ....ny )7, where n; denotes the number of observation for the " subject.
The probability of success occurring in the i*® population is
HI:X:') = E(Q: = 1|X!) =

gBoXjgtBaxy +BaXpt -+ By
1+eB0%i0F By +BoX 4t By

(1.2)

The Multiple Logistic Regression Model is defined as
g BotB1%y HEaXp++E Xy

m(X) = T2 oFotPiE; TRt Thxy (12)

By is the constant term and f3;,j = 1,2, ..., k is the Logistic Regression coefficient for the kth
variable.

The Multiple Logistic Regression Model with two factor interaction is defined as

m(X) =

ngl:""E =1 B +~'—; Brjra®in&if oo+ +Pr—nNip— 1 Xig

r

L3P0t EE B+ IS By e Koy Kijea++Bie— ik Xik— 1 Kie
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(1.3)
where ;51,0 = 1.2,3, ...,k — 1, is the Logistic Regression coefficient of the interaction between
the (k — 1)th variable and the kth variable.
The logit of (3.3) is defined as
G(X) = By +Ejf=15j}{:'j + Ejf;llﬁljﬂ}lrﬂ}{ijﬂ +
Y2 Bapra XeaKijen + BrmsiXiim 1 X
(1.4)
In (1.3) and (1.4), Xiy_1 X = 0,if the (k—1)th variable and the kthvariable are design
variables of same factor.

2.3 Parameter estimation

The method of estimation adopted for the estimation of the Logistic Regression model parameters
is the method of maximum likelihood.

Let the likelihood function be denoted by L(£3).

vy _ ni—0;
L(B) = ?zl(QE}H(X:_j@l [1—1'1(..1{:.]) @ (1.5)
Although [g’) is a constant term in the likelihood function and maximizing

L(B) =TI, m(x)% (1 — =(x,))" “gives same result as maximizing
J"l'-

L) = | [ () m(x0® (1 - m(x))"
QE

i=1
since(gi_) does not contain m(X;), for
n, =land @, =0orl (5_)—1
Therefore, _
L(B) = In [T, w(x)% (1 — =(x,)) %] (16)

WD) = Bhixy(Q-m() A7)

aa;;n;‘} - _Elexu i X, ][1 H(Xf])(1'8)

TheNewton-Raphson equation for iteration is defined as
BU = B + (XTTX)™XT(Q — g )(1.9)

where [,[?':i})r=(ﬁu Bi By  Bx)

@y E(Xﬂ
@, m(X,)
Q= Q.E !P:Q= .‘IT(XHJ ]
Qﬂ'— H[Xuj
t, 0 0 0
0 t, o - 0
r=|o0 e, 0 (1.10)
0 0 0 oty
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For the first step of the iteration (i = 0), we guess the elements of 8 (i.e.8'®) and use our
guess to find B4 (i.e. 1), In the next iteration (i = 1), the result for 8% which is 8 is
substituted for 5 in equation (1.9) and then we solve forS“**’ (i.e. %), The iteration process
continues until B = B**1. Note that at any step of the iteration, the elements of £ are used to
solve for m(X;) which is further used for finding (X"TX) 'and X7(Q — u,) at that step.

2.3.1 Variance and covariance

The variance covariance matrix denoted by ¥ is defined as

V= (xT"Tx)? (1.11)

The diagonal elements in ¥ are the variance of the Logistic Regression coefficients while the off
diagonal elements are the covariance. To compute t; in T, we make use of our maximum
likelihood estimates.

2.3.2 Standard Error and Confidence Interval
The standard error of the jth Logistic Regression coefficient denoted as 5E [;L?_;,} is defined as

SE(B;) = [var(8;)]2(1.12)
The 100(1 — )% confidence interval estimate of the kth Logistic Regression coefficient,

denoted as CI is
_—

cI = ,{?} + zl_%'\lll Var[,{?}-) (1.13)

Where Z,_= is the normal critical value of a two-tail test of size «.

2.4 Likelihood ratio test

The likelihood ratio test is used for comparing the likelihood ratio of one Logistic Regression
model to another. Let G denote the statistic used for this comparison.

G = [—2(loglikelihood of the reduced model —

loglikelihood of the full model)]

(1.14)

=G =—21n[

likelihood of the reduced model
:ikﬂ:ihﬂﬂdfﬂf the full model ] (115)

Supposing that X4, X.. X;5 are independent variables of a Logistic Regression model,

To test Hy: B, = 0, we fit

G(X) = By + B X+ BoXin + B3Xiz and

G(X') = By + B,X.» + B3X3and then compute the log-likelihood of each model.

Likelihood of the full model isTT™., ()% (1 — w(x,))" %, where

E,Enx[n+,[§‘._.rl-._+,[?=.r[=+,[?ax[a
H(Xij =

1+ E,E’D.rl-n+,[?._.r[._+,[?=x[=+,[?ax[a
Also, the likelihood of the reduced model isTTL, m(x,")% (1 — w(x,)) % , where
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.- EEDI[D-FE:I[:*'EH[;
(%)= 1 + ePo%io tEoxi By ¥
I, w(x)% (1 —=(x)) ™
G = _2 ].n - 1_,:2.
?:1 m(X;")% [1 B H(Xifj) L

If P(x*, > G) < a, we reject the null hypothesis and conclude at a level of significance that

the variable X, contributes significantly to the prediction of the dependent variable if it is included
in the model.

2.5 Area under the Receiver Operating Characteristic (ROC) curve.

Classification is done using a cut-off point between zero and one which is chosen by the researcher.
This cut-off point if not well selected may lead to an inaccurate classification. The area under the
ROC curve gives a very good description of classification accuracy. To produce an ROC curve, we
plot the probability of detecting a true signal (sensitivity) and false signal (1-specificity) for an
entire range of cut-off points. The area under the ROC curve ranges from zero to one and it gives a
measure of the model’s ability to discriminate between those subjects who experience the outcome
of interest versus those who do not.

According to Hosmer and Lemeshow (2000), if area under ROC curve # 0.5, this suggests no
discrimination, if 0.7 < area under ROC curve < 0.8 | this is considered an acceptable
discrimination if 0.8 < area under ROC curve = 0.9 |, this is considered an excellent
discrimination, if area under ROC curve = 0.9 | this is considered an outstanding
discrimination.

2.5.1 Estimate of area under ROC curve

Let N_ be the set of subjects with @; =1 and N, the set of subjects with @; = 0.

Let M = N_XN_.={n,n,ns, .., n,}, where n;in M_ is a pair of an element in N_ and an
element in N, and n is the number of elements in N, multiplied by the number of element in N
or the total number of pairs of subjects with @; = 1 and subjects with @; = 0.

For each pair, we compare the estimated odd of the subject with @; = 1 and the estimated odd
for the subject with @; = 0.

Let us defineR = { 1y, 1,73, ... 7, }, where 7; is a value assigned to 1; based on comparison of the
estimated odd of subjects in ;.

For eachn;: r; = 1 if the estimated odd of the subject with @; = 1 is greater than the estimated
odd of the subject with @; = 0;r; = 0.5 if the estimated odd of the subject with @; = 1 is equal
to the estimated odd of the subject with @; = 0;r; = 0 if the estimated odd of the subject with
@; = 1 is less than the estimated odd of the subject with @; = 0.

no
i Ti

The estimate of the area under the ROC curve is —

2.6 Stepwise Logistic Regression

In regression analysis, a collection of variables (independent) are studied to know the association
of such variables with a particular variable (dependent). This collection of independent variables
contains important and unimportant ones. Stepwise Regression is employed to carry out a
stepwise selection procedure aimed at screening this collection of variables, and fitting several
Logistic Regression equations simultaneously. The selection procedure is based on a statistical
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algorithm which carries out a check for important variables, and either add or delete them in
accordance with a decision rule. The importance of an independent variable depends on a
measure of the significance of the coefficient of that variable. In Logistic Regression,
significance of a variable is determined using the likelihood ratio chi-square test. The most
important variable is usually the variable with the largest change in log-likelihood relative to the
model not containing the variable. The steps for Forward Stepwise selection and Backward
Stepwise selection are as follow:

2.6.1 Forward Stepwise selection
STEPO
Let L, denote the log-likelihood of the intercept only model,

L':E.?:'denote the Iog-likelihood of the model containing the jth independent variable,

GE,. = —Z(LD —L" “'3') P. (o) — Pr(,t- (v) = E ) where v = 1 if X;; is continuousand k —1 if
X;; is polytomous,

Pif = m:‘n(Pi;D}),

X, denote the most important variable at step zero,

P denotes the @ — level to judge the importance of a variable

Compute P "% and move to step 1 if F' 9« P , if otherwise, terminate the process.

STEP 1
L".;_:'denote the log-likelihood of the model containing X;, ,

L':i:.:'i}.denote the log-likelihood of the model containing X, and X;;.j = 1.2, ... k.j # e,
¢ =_2 [L':.l} — Y ] be the likelihood statistic of the model containingX;. and X;;versus

ij fey fey i
the model containing only.X;, ,
il - r B
Pz_;. ) = F'r[;r(u] = Gz-l}- ,
X, denote the variable with minimum p-value when added to the model containing X, ,

P:.E::' mm( ) Compute P Y and proceed to step 2 if Pz-f < P, stop if otherwise.

STEP2
Let L~ . denote the log-likelihood of the model without Kie,
6% =-2(1%, —L';j}m) . where LY s the likelihood of the model

contalnlng X, and X,

-}
F_ = F‘r(‘;{r (v) = G_m )
Let X denote the variable that yields the maximum p-value when removed from the model
contalnlng X, and Kie.»

B’ e = max {P ':'__ P .'} )

T —ig
Remove X, if F;M':' = P,, WherePzdenote the @ — level for removal of a variable. If F;f} < Py,
Xy, remains in the model and then we fit a model containing

Progressive Academic Publishing

www.idpublications.org



European Journal of Mathematics and Computer Science| ol 5No.1,2018

Xio X, ,cmd..’{i}-,j=1,2,...,5{,}'#&1,93.

Let Lzs}za y denote the log-likelihood of the model

containingX,, , X, ,and X;;,j = 1,2, ...k, j # e, es,
G.".” z(t. T A ]

iy idn igpigy if J?

F'E.gﬂ} mm(P}ﬂ})

3

Compute F':-E._} and move to step 3 ife'? < P_ , if otherwise, terminate the process.
] Lfg

STEP3
The procedure in STEP 3 is similar to the procedure in STEP 2. The process continues in this
manner until the last step, STEP S.

STEPS

The final step occurs when all k variables have entered the model or when all the variables that are
in the model have p-values to remove less than Py, and the variables not in the model have
p-value to enter greater than Pg.

2.6.2 Backward Stepwise selection
STEPO
Let L, denote the log-likelihood of the full model,

L':D.:' .denote the log-likelihood of the model not containing the jth independent variable,

EEU =—2(%) - 1,)

Pl = Pr’(,t’ (v) = G_U] where v =1if X,; is continuous and k — 1 if X,; is polytomous,

F'E;D} = ma:x[F'E; }),

X, denote the most unimportant variable at step zero,
P denote the a -level to judge the unimportance of a variable
Compute F'E.';f” and move to step 1 ifPi.'f} = P , if otherwise, terminate the process.

STEP1
"” denote the log-likelihood of the model not containing X;,.

denote the log-likelihood of the model not containing X cand X;;,j = 1,2, ...k, j # 1y
|J_:|

G = —2(Lt _), be the likelihood statistic of the model not containing X;, and
X, versus the model not containing onlyX, ,
F' = Pr[;f (v) = G—u)

X” denote the variable with maximum p-value when removed from the model not containing X, ,

p':lzI mctx( ( ) Computep :i

—irg

—iryij —z:

and proceed to step 2 if P . = Pg, stop if otherwise.

STEP2
Let L";;denote the log-likelihood of the model containing X;,. (k= 1.2) and other variables not
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removed in step one.
6 =-2(1% -1}, where L%~ is the likelihood of the model not
T iryitn irg irp i

containing X;, and X, ,
P, =Pr(x’(v) = G},).

Let X;. denote the variable that yields the minimum p-value when entered into the model not
containing X;, and X,

F'E::::I = min (P f:},F ':;;3,.

1 i::'; s
Enter X,,_ if PE'f:' < P,, where Pzdenote the @ — level for entering of a variable. If Pa'f} > Py,
X;., is removed from the model and then we fit a model not containing X, , X;,. , and X,
J=12,.. kj+e,e;.

Let LI:—:E}:-'-EJM y denote the log-likelihood of the model not
containingX, . X, ,and X;;,j = 1,2,....k,j # 1,13,
(2 _ (2) (2) (2) _ 2 (2)
6% =—2(1? -1 ) P =pPr(x*(v) >62)
(@ _ (2)
F_hh = mm(F‘_i}. )

Compute P_':ii and move to step 3 ifP_':il > P , if otherwise, terminate the process.

STEP3
The procedure in STEP 3 is similar to the procedure in STEP 2. The process continues in this
manner until the last step, STEP S.

STEPS

The final step occurs when all k variables have been removed from the model or when all the
variables that are not in the model have p-values to enter greater than Pg, and the variables in the
model have p-value to be removed less than Pg,.

2.7 Best subset Logistic Regression
Best subset logistic regression is another method used for variable selection. This method of
variable selection searches for the best model among models with equal number of variables,
based on some criterion (Mallow’s Cg, AR? etc.).
Best subset selection method is used to select the model with the minimum Cq or the maximum
AR? from the set of models with one variable, two variables, three variables, etc.
Hosmer et al. (1989) showed how to conduct best subset selection in logistic regression using any
software capable of performing best subset linear regression analysis when weights are involved.
To conduct best subset logistic regression using a linear regression program, it is required that we
already know the coefficients of the logistic regression variables.

Iy

Z3
Z= Zq

Zn
B =(XTTX)'XTT(XB + T7(Q — ug))
= (XTTX)"*X'TZ, where
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Z=(XB+T7HQ — ) -
o
B4  — X,
Z!- — l:l x!.l x!.z x;‘k] Jéz + H(XQ;(l—ETEij)

By
Let X = (X, X,) where X, isan N x g+ 1 design matrix for the subset of q variables in the
model and the constant, and X, isan N x k —g matrix containing the remaining k — q.
Let us also partition the vector of coefficients for X, and X, as

BT = (BT BI). The resulting information matrix (1) is
[ = (iff if), where I, = (XITX,) , I, = (XITX,) = 13,, and 1,, = (XITX,).
The estimator of the coefficient vector [3 , obtained from the linear regression of Z on X, using

weighted matrix V is

B, = (%ITx,)*xITZ(1.16)

The vector of fitted values for X, obtained using linear regression is

Z(q) = X,B,. (1.17)

The residual sum of squares for the fitted model containing variables in X, is
SSE(q) = [Z2 - Z(9)]"'T[Z - Z(q)]

= 27Tz - B, X,7TX,F,(3.38)

SSE(k) = [z — Z(k)]'T[Z — Z(k)]

=ZTTZ— BTX"TX[(1.18)

The Mallow’s Cq statistic for a particular subset of g variables, using linear regression is
E8E(q)

C,=—— __ 1 2(g41)—N(119)

T (S5E(k)/N—-k—1)

2.8 Akaike Information Criterion (AIC)

Akaike Information Criterion (AIC) is a measure which enables the comparison of a set of
statistical models to identify the model which minimizes information lost. From a set of
statistical models, AIC gives an estimate of the quality of each of the model relative to each of
the other model.

AIC is defined as

AIC = 2k — 2loglikelihood , where k is the number of estimated parameters in the model
Assuming that there are five models for comparison, if we define the AIC’s of these models
as AIC,, AIC,,AICy,AIC,, and AICs, then the model having min(AIC,, AIC,, AIC,, AIC,, AIC:) is
the best model among these five models.

3. RESULTS
3.1 The Logistic Regression Model with only the constant term
The Logistic Regression model with only the constant term is defined as
B
grre
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3.1.1 Parameter Estimation

efo  XP,Q _204

(X)) = = = 0.7445 foralli=1,2, ... 274
(X:) 1+efo FM.n, 274 f

1 — 7#(X,) = 0.2555 fori=12,..,274, B, =
07%%5 — 1.0695
0. 2555

1

T - = = SE(fR. = |'—R
viar(B,) SR — 001919, SE(B,) = var(B,) ~ 0.139

CI=1074+196%0.139=1.07+ 027244 = [D.?‘S‘?SE ,1.34244)
3.1.2 Model Likelihood
n

LBy) = | [r(x0% (1 = n(x))™®

i=1
=2.365 x 1078
InL(B,) =In(2.365 x 107%¥) = —155.7060 , —2In L(B,) =311.4119

3.2 Logistic Regression model without interaction
The Logistic regression model without interaction, described by Equation 1.2 is defined as
follow

X;, — Motorcycle Ownership (MO)

X:; —Possesion of valid driver’s license (POVDL)
X3 — Alcohol intake (AI)

X., — Knowledge of Road Signs (KORS)

X, — Marital Status (MS)

X..— (30 — 40 years) (AGE1)

X.» — (above 40 years) (AGE2)

Xz — Primary education (EDU1),

X5 —Secondary education and above (EDU2)

gﬁo"'ﬁlxu'"ﬁzxfz +PB3 Xizg +PaXis +Ps Xis +Fs Xijs +F7 Xiz + Ba Xig +PaXijo

1 4+ eBo+B1Xiy +B2Xiz +Pa Xig + B, Xjy +P5 Xis +Ps Xis + 7 Xiz + Pa Xig +Fo Xijo

m(X) =

3.2.1 Parameter estimation
3.2.1.1 Logistic Regression coefficient estimation using Newton-Raphson iteration method.
B = gD 4 (xTTX)"1XT(Q — ). Let B'® be a zero vector,
B = B + (XTTX) XT(Q - 1)
E{G]XE'D +':G:]XE'J_ +':1:]sz +':U:|XE'3+':U]XE'4+':U].x’z'5+{U:].x’z'6+{U]Xf?+{0]xig{ﬂ:].rfg

HI:X:') =

1+ E{U]xm+(U]xu+(1]x52+{0:|x53+(D]xg4+(0]x55+':D]xg¢.+':0]xg'-;+{0].rfg'i0].rfg &

= H(Xij(]- - HI:X[])

Progressive Academic Publishing

www.idpublications.org



European Journal of Mathematics and Computer Science|

68.50
17.50
9.000
38.50
37.50
38.00
2275
6.500
\49J5
13.75

'](r{'-?_.“q}:

(XTTX)XT(Q — ug) =

—

— Ir_'_‘nj.l =

—

CoODOooD oo oD

Xix

274
i=1 tz'

il xat,
(XTTX)= ¥278

=1 Xt

17.509.000

17.505.000
5.0009.000
9.2504.500
10.255.500
8.7504.000
4.2501.000

1.5001.000
11.505.750

3.5002.750

) 6';.‘ y
[ 6
—2
47
29
30
15.5
5
51.5
L‘LU.E’J

and

Zf” it
'I:I' -~
Ez 1%L

Ez?lx J.x 2 L

74
Ez 1 %1% t:

38.5037.50
9.25010.25
4.5005.500
38.5021.00
21.0037.50
22.0019.00
13.0011.75
3.7506.500
26.7526.50
8.0009.250

2.04 -

'rl 1.65
—0.95
0.49
—0.43
—0.42
—0.63
—0.08
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Since B = B'® the iteration converges at the fifth iteration and B is the vector of our
maximum likelihood estimates of the Logistic Regression Model coefficients.

‘Bo
FIJBI

Be
\8e )

At

(XTTX) =

=(X"Tx)t=

Bz
B3
B4
Bs
B
B+

¢ 3139 .
'If—2.233
—1.308
0.757
—0.729
—0.544
—1.141
—0.784
I,II—EI.EEEIIJ

—0.460°
/ 3.338

'rl—2.ﬂ1-82
—1.435
0.870
—0.864
—0.605
—1.378

—1.004
—0.359
""~—n.511 /

II,-' 3.559 »

—2.482
—1.4355

0.870

—0.865
—0.606
—1.377
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—0.339

—0.5127
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6.0680
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4,5000
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705040 01390004407
0.15400.0070
0.00700.2280
0.01700.0010
0.02100.0060
0.01100.0120
0.0520 0.0550
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0.04700.0230

0.04200.0430
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3.2.1.2 VVariance and Standard error of estimate

the

13.4366.0680
13.4363.2580
3.25806.0680
7.42703.0680
7.37303.6790
6.61502.8960
2,53100,3330

1.32700,9290
8.79103.9070

16.98021.575
7.42707.57350
3.06803.56790
15.98010.698
10.69621.575
11.32813.084
6.28608.3670
2.41001.8970
11.40714.088

0.01700.0210
0.0010 0.00a0
0.1170-0.006
0.00600.1280
0.00700.0080
0.00300.0170
0.00800.0370
0.00200.0080
0.00700.0000

fifth

22.68614.000
6.61502.5310
2.89600.3530
11.3286.5860
13.0848.35870
22.68611.793
11.79314.000
4.49900.0000
15.81610.674

4,500024.717
1.32708.7910
0.92903.9070
2.410011.407
1.897014.9538
4.499015.816
0.000010.674

4.,50002.4360
2.436024.717

0.0340 0,106 " T0.09 8 C0.088 7 20,1330 3
0.0110 0.0520
0.0120 0.0550
—0.007-0.003
0.0080 0.0170

0.1810—0.071

—0.0710.2010
—0.1060.1270
—0.037-0.004
—0.056—0.002

0.0460 0.0470
0.0110 —0.025
—0.0080.0020
0.0370 0.0080
—0.106-0.037
0.1270-0.004
0.37800.0730
0.07300.4260
0.08400.3880

iteration,

743400
2,2090
1.7530
4.0620
4.8050
2.7080
2,9930

1.2330
0.0000

386 "—0.365
0.0480
—0.043
—0.007
0.0000
—0.056
—0.002
0.0640
0.3880

0.5300 ¢
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‘VAR(B,)» 0,604
"fwm{,ﬂlil [ 0.154
VAR(g,) 0.228
VAR(B3) 0.117
_ | VAR(By) | _| 0.128
VAR(gs) | | 0.181
VAR(B) 0.201
anon | (o)
VAR(Bg 42
\var(gy/ 0530/
SEBo)\ 9777,
SE(B,) 0.4?8
SE(B3) 0.342
_ | SE(By) | _| 0.358
SE(Bs) | | 0.425
SE(B,) 0.448
el || 0653
SE{FE] '
\sg(py)/ '0.728’

3.2.2 Variable selection for model without interaction

For Forward and Backward stepwise logistic regression,Pz = 0.15 and Pz = 0.2,

Table 2. Summary of Mallow’s Cq, AIC and AROC for selected models (model without
interaction)

Selection Variables in the | Cq AlC AROC
Method model

Forward XKoo Ko, 6.500 | 238.493 | 0.845

stepwise X Xie Kig Xiz

Backward | X;,.X;-, X5, 6.500 | 238.493 | 0.845

stepwise XigoKig, Xig Xz

Best subset | X;,.X;a, Xiq. 6.500 | 238.493 | 0.845
KoK Ko Xiz

3.3 The Logistic regression model with two factor interaction

The Logistic regression model with interaction,described by Equation 1.3 is defined as follow
X;; — Motorcycle Ownership(MO)

X;2 —Possesion of Valid Driver’s License (POVDL)

X3 — Alcohol intake (AI)

X, — Knowledge of Road Signs (KORS)

X, — Marital Status (MS)

X..— (30 — 40 years) (AGE1)

X,» — (above 40 years) (AGE2)
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3.3.1 Variable selection for models with two factor interaction.
For Forward and Backward stepwise logistic regression,Pz = 0.15 and Pz = 0.2.

Table 3. Summary of AIC and AROC for selected models (model with interaction)
Selection | Variables in the model AlC AROC
Method

Forward

Xis X K 226.512 | 0.862
stepwise | X;a :
Kis

Backward | Xi, Koz Xear Xigr Keor | 220.568 | 0.868
stepwise | X2 Xz XigKis XiaXig

Best Koo Ko Koo Koo Koo Ko, | 220185 | 0.871
subset XiaKig K Xig

4. DISCUSSION

The data analyzed contains seven dependent variables with 274 observations. The independent
variables are Motorcycle Ownership (X;,), Possession of Valid Driver’s License (X;,), Alchohol
Intake (X;3), Knowledge of Road Signs (X:;) Marital Status (X;s), AGE1 [30-40 (X;.)], AGE2
[above 40 (¥;;)], EDU1 [Primary education (X;z}], EDU2 [Secondary education and above (X;5]].
We used the Newton Ralphson iteration method to obtain coefficients of the variables in the full
model (model without interaction factors). We also performed variable selection to fit a model not
containing interaction factors and a model containing two factor interactions using Forward
Stepwise, Backward Stepwise, and Best Subset methods of variable selection.

4.1 Model without interaction

The variables considered for selection are Xy, X;5, X3, X;a, X2, X, X7, X5, and X5, The three
selection techniques employed excludedX;; and X ;5. Table 2 gave a summary of the Mallow’s Cq,
AIC and AROC for selected models. The information on Table 2 show that Best subset method,
Forward stepwise method and backward stepwisemethod selected same set of variables
(X1 X2 K20 X0 X5, X Xi7)[Mallow’s Cq (6.500) AIC (238.493), and AROC (0.845)]. This
shows that forward stepwise method, backward stepwise method and best subset method has equal
performance for selecting variables when interaction factors are not present.

The resulting AROC values for the models in Table 2 are all between 0.8 and 0.9, which indicates
that the fitted models have excellent discrimination ability.

4.2 Model with interaction
For model with interaction, there are differences in the variables selected by the three variable
selection methods adopted in this research work.
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Best Subset method selected 25 models from which we chose the model [variable in the model
(Xipr Xigo Xia Xigo Xigo X7y Xn X5, X,0X¢)]  with the smallest AIC value (220.185) (see
Table 5).

Backward Stepwise method selected a model [variable in the model (X;y, X3, X;s Xieo X7
XioXiqe X3 X5, XX, )] with larger AIC value (220.568) compared to the AIC value (220.185)
of the selected model with minimum AIC value among models selected using Best subset
method (see Table 3).

Forward Stepwise method selected a set of variables resulting in a model [variable in the model
[Xz'lf X:’S’ X:’E’ X:’J.Xz'-}f X:’ZXEEF X:’S‘Ez’ﬁ’

X:'-;Xi'.-" X:’EX:'G)]

with the largest AIC value (226.512) and the smallest AROC value (0.862) (see Table 3).

The model with the smallest AIC value among models selected using Best Subset method have
AIC value smaller than the model fitted with the variables selected using Forward Stepwise
selection method and Backward Stepwise selection method. Table 3 shows the AIC values and
the AROC values for the models selected by each selection technique.

From Table3, the method with the best performance for fitting a model containing two factor
interactions is the Best subset method which fitted a model [variables in the model
(Xipr Xige Xigo Xigo Xigo Xip XipX 3. X.X2)] with the minimum AIC value (220.185) and
maximum AROC value (0.871) when compared to that of Backward Stepwise selection method
and Forward Stepwise method.

5. CONCLUSION
In conclusion,
e The three methods of variable selection considered in this study have same performance in
selecting variables for fitting a model without interaction.
e Best subset method outperformed Backward Stepwise method and Forward stepwise
method in selecting variables for fitting a model with two factor interaction.
e All the models selected have excellent discrimination ability.
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Table 4. Summary of all selected models (model without interaction) using best subset method
Table 5. Summary of all selected models (model with interaction) using best subset method

k-1 | Variable in the model RSS Cq -2LL AIC
1 X 287.434 | 12.7613 | 261.788 | 265.788
2 X Koo 280.269 | 7.7136 | 253.913 | 259.913
3 X, Xie, Xin X 276.164 | 5.6748 | 240.251 | 248.251
4 Xy Kear Ko Kar XK o7 271.112 | 2.7049 | 229.406 | 239.406
5 Xy Xz KoK X o Xy Koo X g 268.323 | 1.9618 | 219.652 | 231.652
6 X Kogo X X X 264.976 | 0.6691 | 213569 | 227.569
XEEXEE’XEEXES
7 X X X e, X7, 262.185 | -0.0770 | 204.704 | 220.704
X:’ZXEEFXNXM
8 Koo Xz Xijgo Ko Xy, X7, 260.019 | -0.2074 | 202.185 | 220.185
XﬂX:EfXMXzE-
9 X Xiao Xigo Xigo X Xy, 258.287 | 0.0887 | 200.393 | 220.393
X:- EE’XE4XE6’XE3XE6
10 X Xz Xoar Xizr KigoXims 257.148 [ 0.9684 | 199.213 | 221.213
X:‘EXEEI XHXiEu’XzEXzG’ X:J.Xz'?
11 | X X Xy Koz Koo Xom, 255.605 | 1.4503 | 197.522 | 221.522
X:’EXEE! XMX:'E-’X:'EXE& Xilxiea X:’lxi?
12 | Xy Koo Xy Koz Koo Koo 255.063 | 2.9166 | 196.951 | 222.951
XEEXEEJXHXEE-’XEEXEEH Xz'l‘]fiea Xz'l‘]{z"?a XHX:"?
13 | X.p X Xop Koo Ko 254576 | 4.4381 | 196.453 | 224.453
Xil‘lfiﬁFXﬂXz?FX: X:EIFX X:Eu X:‘Yi?i X:’EIXz'Ev
KigXie, Xia e
14 X1 Kew Kiw Xogo Xir X oo 254.015 | 5.8857 | 195.241 | 225.241
Xil‘lfiﬁFXﬂXz?FX: X fX X:EHX X X:EIXzEu
X:4Xz61 de-Xz?
15 X1 Xea Xows Xogr X 253519 | 7.3980 | 194.796 | 226.796
X:’iX:’G’X:’iX:’?’XﬂX:‘E’X:'EXEGa XEEX:"Fa X:‘EXEEIXEEXE&
XE4X2'5’XE4XE61 XH-XE?
16 X Xz X Xogr Ko, 253.264 | 9.1474 | 194.486 | 228.486
X:’l‘riG’X:‘iXﬁ?’XﬂXﬁ’X:’EX:'E.;
XEZXi?vXEEXMszHXzE X:’HXEEH XHXEEFXMXEEH XMXE'.'-'
17 X Xo Xogo X X oo X o, 252.854 | 10.7437 | 194.266 | 230.266
Xilxifszleﬁszle X X:EI’ X X:EHX X".'-’a
XEEXEE-’XEEXEIE! X:4Xz51Xz4Xz6’ Xz4Xz?
18 Xy, Ko X g Koy Xy X o 252.599 | 12.4923 | 193.936 | 231.936

GJ'XEJ.XE'.'-"’ XE_XEE’ Xz_Xz'Eu
EXE'E-’X'

EXEEH XHXEE’XHXEE) XMXE'.'-'
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19 Ko KXo Xigo Xis Xygo X1 252.455 | 14.3511 | 193.743 | 233.743
XXz Xy Koo X1 X0 Ko Xz KXo X, Xip Xy,
Xia X0 XiaXig,
XEEXEE-’XEEXEGa X:4Xz51Xz4Xz61 thl"]{z?
20 Xt X X X oo X g X o 252.323 | 16.2217 | 193.692 | 235.692
X1 X2 K1 K3, X1 Kijor X3 X Xy X7, X3 X7, X o X,
y XiaXiz, XiaXis, XiaXie, XiaXis, Xjy Xy, XiaX iz
21 Xt Ko X g Koy X X g X 252.198 | 18.0990 | 193.659 | 237.659
Xi1Kizr X1 Kias Xy Xyeo Xia Xy X3y X730 X2 X7, Ko X3,
v KX imy XigXig, Xia Xy, XpaKigo Xin X, KiaXp
22 Xt Xip X iz Koy X X g X 252.114 | 20.0161 | 193.612 | 239.612
X1 X2 K1 K3, X1 Kijor X3 X Xy X7, X3 X7, X o X,
y XiaXiz, XiaXis, XiaXie, XiaXis, Xjy Xy, XjaX iz
XisXie
23 Xigo Ko Xia, Xpgo Ko, X, X, 252.100 | 22.002 | 193.582 | 241.582
X1 Kz X1 Kias Xy Xigo Xia X Xy K70 X2 X7, Xp X3,
y KiaXiz, XiaKig, XiaXie, XiaKis, Xy X,
XiaXip XisXie
24 Xigo Ko Xin, Xigo Ko Xie X0, Xy X5 252.098 | 24.0003 | 193.560 | 243.56
s Ky X Xy Ko Xy Ko Xia Ko Xy X7 Xia X7 X2 Xizs X
v KinXig, XigXig, Xz X,
XiaKigr XiaKis: Kja Xz Xis Xig
Xi1Kiar X1 Xigs Xy X g Xia X Xy K70 X3 Xi7: Ko Xz, X
v KinXig, XigXig, Xz X,
KXiaKigr XiaKig: Xig Xig, Xis X
k-1 | Variable in the model SSE Cq -2LL AIC
1 X 293.9354 | 25.749 261.788 265.788
2 X Xig 288.0576 21.834 251.658 257.658
3 KXo Xion X 279.6204 15.345 241.144 249.144
4 X X X X 274.6962 12.391 234.867 244.867
5 Xip Xins X X X 270.1564 | 9.823 230.078 242.078
6 X X X3 X X X 265.3246 | 6.961 224.898 238.898
7 Nip Xiny Xigu X X X0 Xim 262.8789 | 6.500 222.493 238.493
8 Nip Xins X, X Xie X0 X0 X 262.6844 | 8.305 222.296 240.296
9 Xipo X Xigo X X, X0 X7 X0 X ig 262.3816 10 221.985 241.985
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